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BLOCK – I   INTRODUCTION 

 

UNIT 1 INTRODUCTION  

Structure 

1.0 Introduction 

1.1 Objective 

1.2 Operating System 

1.3 Definition of Operating system 

1.4 Computer System Organization 

1.5 Check Your Progress 

1.6 Answers to Check Your Progress Questions 

1.7 Summary 

1.8 Key Words  

1.9 Self-Assessment Questions and Exercises 

1.10 Further Readings 

1.0  INTRODUCTION 

Operating system is the interface between the hardware and software. The 

purpose of an operating system is to provide an environment in which a 

user can execute programs in a convenient and efficient manner. An 

operating system is a software that manages the computer hardware. The 

hardware must provide appropriate mechanisms to ensure the correct 

operation of the computer system and to prevent user programs from 

interfering with the proper operation of the system. This unit covers the 

basics of operating system and how the entire computer system is 

organized. Definition of Operating System can be defined as, 

 An operating system is a program that controls the execution of 

application programs and acts as an interface between the user of a 

computer and the computer hardware. 

 A more common definition is that the operating system is the one 

program running at all times on the computer (usually called the 

kernel), with all else being application programs. 

 An operating system is concerned with the allocation of resources 

and services, such as memory, processors, devices, and 

information. The operating system correspondingly includes 

programs to manage these resources, such as a traffic controller, a 

scheduler, memory management module, I/O programs, and a file 

system. 

1.1 OBJECTIVE 

This not helps the user to 

 Understand operating system 
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 Learn different computer system organization 

1.2 OPERATING SYSTEM 

 computer system can be divided roughly into four components: the 

hardware, the operating system, the software programs, and the users. The 

hardware—the central processing unit (CPU), the memory, and the 

input/output (I/O) devices—provide the simple computing sources for the 

system. The software programs—such as phrase processors, spreadsheets, 

compilers, and Web browsers—define the methods in which these assets 

are used to remedy users’ computing problems. The running gadget 

controls the hardware and coordinates its use amongst the variety of utility 

programs for the variety of users. In view a laptop device as consisting of 

hardware, software program and data. The operating gadget offers the 

means for appropriate use of these assets in the operation of the pc system. 

An operating system is comparable to a government. Like a government, it 

performs no useful feature by way of itself. It truly gives an environment 

inside which other programs can do beneficial work.   

 

1.2.1 User View 

The user’s view of the laptop varies according to the interface being used. 

Most laptop customers take a seat in the front of a PC, consisting of a 

monitor, keyboard, mouse, and system unit. Such a gadget is designed for 

one user. The purpose is to maximize the work (or play) that the user is 

performing. In this case, the operating system is designed mostly for ease 

of use, with some interest paid to overall performance and none paid to 

resource utilization—how more than a few hardware and software program 

sources are shared. Performance is, of course, necessary to the user; 
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however, such systems are optimized for the single-user trip as a substitute 

than the necessities of multiple users. In other cases, a user sits at a 

terminal related to a mainframe or a minicomputer. Other customers are 

having access to the same laptop through different terminals. These 

customers share sources and can also trade information. 

The working machine in such cases is designed to maximize aid 

utilization— to guarantee that all handy CPU time, memory, and I/O are 

used efficiently and that no man or woman person takes greater than her 

truthful share. In still other cases, customers sit down at workstations 

related to networks of different workstations and servers. These customers 

have dedicated resources at their disposal; however, they additionally share 

sources such as networking and servers, such as file, compute, and print 

servers. Therefore, their running machine is designed to compromise 

between person usability and useful resource utilization. 

Recently, many types of mobile computers, such as smartphones and 

tablets, have come into fashion. Most mobile computers are standalone 

gadgets for individual users. Quite often, they are related to networks 

through mobile or other Wi-Fi technologies. Increasingly, these cell 

devices are replacing computer and laptop computers for human beings 

who are exceptionally interested in the usage of computers for electronic 

mail and web browsing. The user interface for cellular computer systems 

normally aspects a touch screen, the place the person interacts with the 

device with the aid of pressing and swiping fingers throughout the display 

as an alternative than using a physical keyboard and mouse. Some 

computers have little or no user view. For example, embedded computers 

in home units and cars may additionally have numeric keypads and might 

also turn indicator lights on or off to show status, however they and their 

running structures are designed notably to run without user intervention 

1.2.2 System View 

From the computer’s point of view, the operating device is the application 

most intimately worried with the hardware. In this context, we can view an 

operating device as a resource allocator. A computer device has many 

resources that may be required to remedy a problem: CPU time, 

reminiscence space, file-storage space, I/O devices, and so on. The running 

system acts as the manager of these resources. Facing numerous and 

maybe conflicting requests for resources, the operating device ought to 

figure out how to allocate them to precise applications and users so that it 

can operate the laptop machine effectively and fairly. As the, aid allocation 

is especially important where many users access the identical mainframe or 

minicomputer. A barely special view of an operating system emphasizes 

the need to control the range of I/O devices and user programs. An 

operating system is a manipulate program. A manage software manages 

the execution of user programs to forestall errors and unsuitable use of the 

computer. It is especially worried with the operation and manages of I/O 

device. 
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1.3 DEFINITION OF OPERATING SYSTEM 

A set of software that controls the ordinary operation of a laptop system, 

generally through performing such tasks as reminiscence allocation, job 

scheduling, and input/output control. A running machine is a program that 

manages the laptop hardware. It also offers a basis for software 

applications and acts as an intermediary between the laptop person and the 

laptop hardware. An operating system acts as an intermediary between the 

consumer of the computer and computer hardware. The cause of a working 

gadget is to grant surroundings in which a person can execute applications 

in a convenient and efficient manner. 

An operating machine is software program that manages the computer 

hardware. The hardware has to provide appropriate mechanisms to ensure 

the correct operation of laptop gadget and to prevent user applications from 

interfering with proper operation of the system. 

 

Fig 1.2 working of Operating System 

In addition, we have no universally generic definition of what is section of 

the running system. A simple viewpoint is that it includes the whole thing a 

seller ships when you order ―the running system.‖ The facets included, 

however, fluctuate significantly across systems. Some systems take up 

much less than a megabyte of space and lack even a full-screen editor, 

whereas others require gigabytes of space and are based entirely on 

graphical windowing systems. A greater common definition, and the one 

that we generally follow, is that the working machine is the one application 

walking at all instances on the computer—usually called the kernel.  

Along with the kernel, there are two other types of programs: system 

programs, which are related with the operating device but are now not 

necessarily phase of the kernel, and application programs, which consist of 

all programs now not associated with the operation of the system. The 

matter of what constitutes a working device grew to be increasingly 

necessary as personal computer systems grew to be greater extensive and 

working structures grew increasingly more sophisticated. In 1998, the 

United States Department of Justice filed go well with against Microsoft, 
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in essence claiming that Microsoft blanketed too plenty functionality in its 

running structures and consequently avoided application companies from 

competing.  

For example, a Web browser was a necessary phase of the working 

systems. As a result, Microsoft was once determined guilty of the use of its 

operating-system monopoly to limit competition. Today, however, if we 

seem to be at running systems for cellular devices, we see that once again 

the variety of features constituting the running gadget 

1.4 COMPUTER SYSTEM ORGANIZATION 

1.4.1 Computer System Operation 

A modern-day general-purpose computer gadget consists of one or extra 

CPUs and a quantity of machine controllers connected via a frequent bus 

that presents get right of entry to shared memory. Each device controller is 

in charge of a particular type of machine (for example, disk drives, audio 

devices, or video displays). The CPU and the system controllers can 

execute in parallel, competing for reminiscence cycles. To make certain 

orderly get entry to the shared memory, a reminiscence controller 

synchronizes get entry to the memory. 

 

 

 

 

 

 

 

 

Figure 1.3 modernized computer system 

There are numerous elements however three of them are main components 

in a pc system. They are the Central Processing Unit (CPU), reMemory 

(RAM and ROM) and Input, Output devices. The CPU is the predominant 

unit that technique data. Memory holds records required for processing. 

The input and output devices allow the customers to communicate with the 

computer.  

The mechanism for every of the components to talk with every different is 

the bus architecture. It is a digital verbal exchange system, which includes 

information via electronic pathways known as circuit lines. The gadget bus 

is divided into three kinds referred to as tackle bus, facts bus and 

manipulates bus. 
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Figure 1.4 Timeline of Interrupts 

Once the kernel is loaded and executing, it can begin offering services to 

the machine and its users. Some services are supplied outside of the kernel, 

through device programs that are loaded into memory at boot time to come 

to be gadget processes, or system daemons that run the entire time the 

kernel is running. On UNIX, the first machine method is ―init,‖ and it 

begins many other daemons. Once this phase is complete, the system is 

entirely booted, and the device waits for some event to occur. The 

prevalence of a tournament is generally signaled through an interrupt from 

both the hardware or the software. Hardware might also set off an interrupt 

at any time via sending a signal to the CPU, normally by using way of the 

device bus. Software may additionally set off an interrupt via executing a 

one-of-a-kind operation called a system call (also called a display call). 

When the CPU is interrupted, it stops what it is doing and right away 

transfers execution to a constant location. The constant place typically 

contains the beginning tackle the place the service movements for the 

interrupt is located. The interrupt service hobby executes; on completion, 

the CPU resumes the interrupted computation. A timeline of this operation 

is proven in Figure 1.4. Interrupts are a necessary section of pc 

architecture. Each laptop graph has its own interrupt mechanism, but a 

number of features are common. The interrupt should switch and 

manipulate to the excellent interrupt carrier routine. The easy approach for 

handling this switch would be to invoke usual pursuits to examine the 

interrupt information. The routine, in turn, would call the interrupt-specific 

handler. 

However, interrupts need to be treated quickly. Since only a predefined 

number of interrupts is possible, a desk of pointers to interrupt routines can 

be used as an alternative to provide the vital speed. The interrupt 

movement is known as indirectly through the table, with no intermediate 

hobbies needed. Generally, the desk of pointers is stored in low 

reminiscence (the first hundred or so locations). These areas preserve the 

addresses of the interrupt carrier routines for the number devices. This 

array, or interrupt vector, of addresses is then listed via a unique machine 

number, given with the interrupt request, to grant the address of the 

interrupt service routine for the interrupting device. Operating systems as 

different as Windows and UNIX dispatch interrupts in this manner.  
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The interrupt structure must additionally retailer the address of the 

interrupted instruction. Many historical designs truly stored the interrupt 

tackle in a fixed place or in a location listed by way of the gadget number. 

More current architectures save the return address on the system stack. If 

the interrupt activities wish to regulate the processor state—for instance, 

through modifying register values—it has to explicitly shop the modern-

day kingdom and then restore that nation earlier than returning. After the 

interrupt is serviced, the saved return address is loaded into the program 

counter, and the interrupted computation resumes as even though the 

interrupt had not occurred. 

1.4.2 Storage Structure 

The CPU can load instructions only from memory, so any packages to run 

have to be stored there. General-purpose computer systems run most of 

their programs from rewritable memory, referred to as principal memory 

(also called random-access memory, or RAM). Main reminiscence 

frequently is implemented in a semiconductor science known as dynamic 

random-access reminiscence (DRAM). Computers use other forms of 

memory as well. We have already stated read-only memory, ROM) and 

electrically erasable programmable read-only memory, EEPROM). 

Because ROM can't be changed, solely static programs, such as the 

bootstrap application described earlier, are stored there. 

The immutability of ROM is of use in game cartridges. EEPROM can be 

changed however cannot be changed frequently and so carries often static 

programs. For example, smartphones have EEPROM to keep their factory-

installed programs. All forms of reminiscence grant an array of bytes. Each 

byte has its personal address. Interaction is achieved via a sequence of load 

or store instructions to unique memory addresses. The load training moves 

a byte or word from most important reminiscence to an inner register 

inside the CPU, whereas the keep instruction moves the content material of 

a register to primary memory. Aside from explicit hundreds and stores, the 

CPU automatically masses directions from principal memory for 

execution. 

A regular instruction–execution cycle, as executed on a machine with von 

Neumann architecture, first fetches an instruction from reminiscence and 

shops that instruction in the coaching register. The coaching is then 

decoded and can also cause operands to be fetched from reminiscence and 

stored in some internal register. After the coaching on the operands has 

been executed, the end result may also be saved lower back in memory. 

Notice that the memory unit sees solely a flow of memory addresses. It 

does not comprehend how they are generated (by the guidance counter, 

indexing, indirection, literal addresses, or some different means) or what 

they are for (instructions or data). 
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Figure 1.5 Hierarchy of Storage Device 

Accordingly, we can omit how a reminiscence address is generated 

through a program. We are involved only in the sequence of memory 

addresses generated by way of the going for walks program. Ideally, we 

prefer the applications and facts to reside in major memory permanently. 

This association usually is not feasible for the following two reasons: 1. 

Main reminiscence is commonly too small to shop all needed programs 

and records permanently.2. Main memory is an unstable storage system 

that loses its contents when energy is turned off or otherwise lost. Thus, 

most pc systems supply secondary storage as an extension of important 

memory. The principal requirement for secondary storage is that it be able 

to maintain large portions of statistics permanently. The most frequent 

secondary-storage machine is a magnetic disk, which affords storage for 

both packages and data. Most programs (system and application) are stored 

on a disk until they are loaded into memory. Many programs then use the 

Hence, the applicable management of disk storage is of central importance 

to a pc system, as we talk about in. In a larger sense, however, the storage 

shape that we have described current of registers, principal memory, and 

magnetic disks—is only one of many possible storage systems. Others 

consist of cache memory, CD-ROM, magnetic tapes, and so on. Each 

storage system affords the simple functions of storing a datum and keeping 

that datum until it is retrieved at a later time. The most important variations 

among the various storage structures lie in speed, cost, size, and Volatility. 

The huge range of storage structures can be organized in a hierarchy 

(Figure 1.4) in accordance to speed and cost. The higher stages are 

expensive; however, they are fast. As we move down the hierarchy, the 

price per bit usually decreases, whereas the get right of entry to time 

commonly increases. This trade-off is reasonable; if a given storage 

machine have been each quicker and much less luxurious than another—

other homes being the same—then there would be no motive to use the 

slower, extra high priced memory.  



 

9 

 

Introduction 

 

 

Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self – Instructional Material 

 

 

 

In fact, many early storage devices, which includes paper tape and core 

memories, are relegated to museums now that magnetic tape and 

semiconductor memory have end up faster and cheaper. The top 4 degrees 

of memory in Figure 1.4 can also be constructed the use of semiconductor 

memory. In addition to differing in velocity and cost, a range of storage 

systems are both unstable or nonvolatile. As stated earlier, unstable storage 

loses its contents when the energy to the gadget is removed. In the absence 

of highly-priced battery and generator backup systems, statistics must be 

written to non-volatile storage for safekeeping. 

The storage systems above the solid-state disk are volatile, whereas these 

which includes the solid-state disk and under are nonvolatile. Solid-state 

disks have countless editions but in regularly occurring are quicker than 

magnetic disks and are nonvolatile. One type of solid-state disk stores 

information in a large DRAM array during everyday operation however 

also contains a hidden magnetic difficult disk and a battery for backup 

power. If exterior strength is interrupted, this solid-state disk’s controller 

copies the facts from RAM to the magnetic disk. 

When exterior strength is restored, the controller copies the facts lower 

back into RAM. Another form of solid-state disk is flash memory, which is 

popular in cameras and private digital assistants (PDAs), in robots, and 

increasingly more for storage on general-purpose computers. Flash 

memory is slower than DRAM however needs no strength to retain its 

contents. Another structure of nonvolatile storage is NVRAM, which is 

DRAM with battery backup power. This memory can be as fast as DRAM 

and (as lengthy as the battery lasts) is nonvolatile. The sketch of a whole 

reminiscence gadget needs to stability all the elements just discussed: it 

have to use solely as lots pricey memory as crucial whilst presenting as an 

awful lot inexpensive, nonvolatile memory as possible. Caches can be 

established to enhance overall performance where a massive disparity in 

get right of entry to time or transfer fee exists between two components. 

1.4.3 I/O Structure 

Storage is solely one of many kinds of I/O gadgets within a computer. A 

large element of working device code is committed to managing I/O, each 

because of its importance to the reliability and overall performance of a 

gadget and due to the fact of the various nature of the devices. Next, we 

grant an overview of I/O. A general-purpose pc device consists of CPUs 

and a couple of system controllers that are connected through a common 

bus. Each machine controller is in cost of a precise kind of device. 

Depending on the controller, more than one device may also be attached. 

For instance, seven or more units can be attached to the small computer-

systems interface (SCSI) controller. A gadget controller continues some 

local buffer storage and a set of special-purpose registers. The gadget 

controller is accountable for moving the records between the peripheral 

units that it controls and its nearby buffer storage.  

Typically, working structures have a machine driver for every gadget 

controller. This machine driver is familiar with the machine controller and 
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provides the rest of the running system with a uniform interface to the 

device. To begin an I/O operation, the gadget driver masses the appropriate 

registers within the device controller. The gadget controller, in turn, 

examines the contents of these registers to determine what action to take 

(such as ―read a personality from the keyboard‖). The controller starts off 

evolved the transfer of records from the machine to its nearby buffer. Once 

the switch of statistics is complete, the system controller informs the 

gadget driver via an interrupt that it has finished its operation. The device 

driver then returns control to the running system, possibly returning the 

statistics or a pointer to the facts if the operation was once a read. For other 

operations, the system driver returns repute information. This form of 

interrupt-driven I/O is great for transferring small amounts of data but can 

produce high overhead when used for bulk data motion such as disk I/O. 

To remedy this problem, direct reminiscence get right of entry to (DMA) is 

used. After placing up buffers, pointers, and counters for the I/O device, 

the gadget controller transfers a whole block of information immediately to 

or from its very own buffer storage to memory, with no intervention by the 

CPU. Only one interrupt is generated per block, to inform the device driver 

that the operation has completed, as a substitute than the one interrupt per 

byte generated for low-speed devices. While the system controller is 

performing these operations, the CPU is reachable to accomplish other 

work. Some high-end structures use switch as an alternative than bus 

architecture. On these systems, multiple factors can discuss to different 

factors concurrently, instead than competing for cycles on a shared bus. In 

this case, DMA is even more effective. Figure 1.6 suggests the interplay of 

all factors of a laptop system. 

Check your Progress 

1. What is an operating system? 

2. What is the kernel? 

3. What are the various components of a computer system? 

4. What are the types of ROM? 

5. What is SCSI? 

 

 

1.5. ANSWERS TO CHECK YOUR PROGRESS 

1. An operating system is a program that manages the computer 

hardware. it acts as an intermediate between a user’s of a computer 

and the computer hardware. It controls and coordinates the use of 

the hardware among the various application programs for the 

various users. 

2. A more common definition is that the OS is the one program 

running at all times on the computer, usually called the kernel, with 

all else being application programs. 
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3. A computer system can be divided roughly into four components: 

the hardware, the operating system, the software programs, and the 

users. 

4. There are five basic ROM types: 

 ROM. 

 PROM. 

 EPROM. 

 EEPROM. 

 Flash memory 

5. SCSI - Small computer systems interface is a type of interface used 

for computer components such as hard drives, optical drives, 

scanners and tape drives. It is a competing technology to standard 

IDE (Integrated Drive Electronics). 

 

1.6. SUMMARY 

 A computer system can be divided roughly into four components: 

the hardware, the operating system, the software programs, and the 

users. 

 An operating system is a program that controls the execution of 

application programs and acts as an interface between the user of a 

computer and the computer hardware. 

 When the CPU is interrupted, it stops what it is doing and right 

away transfers execution to a constant location. 

 To begin an I/O operation, the gadget driver masses the appropriate 

registers within the device controller.  

 Flash memory is slower than DRAM however needs no strength to 

retain its contents.  

 The CPU can load instructions only from memory, so any packages 

to run have to be stored there. 

 

1.7. KEYWORDS 

Operating system: An operating machine is software program that 

manages the computer hardware. 

Storage system: The storage systems above the solid-state disk are 

volatile, whereas these which includes the solid-state disk and under 

are nonvolatile. 

Interrupt: Interrupt is the mechanism by which modules like I/O or 

memory may interrupt the normal processing by CPU.  

 

1.8. SELF ASSESSMENT QUESTIONS AND EXERCISES 

Short Answer questions: 

1. Explain the concept of the batched operating systems? 



 

12 

 

Introduction 

 

 

Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Self – Instructional Material 

 

 

2. What is purpose of different operating systems? 

3. Difference between User View and System View? 

4. Define I/O Structure? 

5. Define Storage Structure? 

 

Long Answer questions: 

1. Explain Hierarchy of Storage Device? 

2. Define Operating System and his working? 

3. Define Computer System Organization? 

 

1.9. FURTHER READINGS 

Silberschatz, A., Galvin, P.B. and Gagne, G., 2006. Operating system 

principles. John Wiley & Sons. 

Tanenbaum, A.S. and Woodhull, A.S., 1997. Operating systems: design 

and implementation (Vol. 68). Englewood Cliffs: Prentice Hall. 

Deitel, H.M., Deitel, P.J. and Choffnes, D.R., 2004. Operating systems. 

Delhi.: Pearson Education: Dorling Kindersley. 

Stallings, W., 2012. Operating systems: internals and design principles. 

Boston: Prentice Hall,.
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UNIT II 
COMPUTER SYSTEM ARCHITECTURE 

 

Structure 
2.0 Introduction 

2.1 Objective 

2.2 Computer-System Architecture 

2.3 Operating-System Operations 

2.4 Check Your Progress 

2.5 Answers to Check Your Progress Questions 

2.6 Summary 

2.7 Key Words  

2.8 Self-Assessment Questions and Exercises 

2.9 Further Readings 

 

2.0 INTRODUCTION 

This unit explains the structure of the operating system and the operations 

associated with it. Computer architecture is a set of rules and methods that 

describe the functionality, organization, and implementation of computer 

systems. Some definitions of architecture define it as describing the 

capabilities and programming model of a computer but not a particular 

implementation. In other definitions computer architecture involves 

instruction set architecture design, microarchitecture design, logic design, 

and implementation. The structure of the system and the various types are 

explained briefly. The different types of computer architecture and its 

working are explained clearly. 

2.1 OBJECTIVE 

This unit helps the user to 

 Understand the various computer architecture 

 Learn the operations of operating system 

2.2 COMPUTER-SYSTEM ARCHITECTURE 

The laptop machine can be defined under many classes which are listed out 

one with the aid of one below. 

 

2.2.1 Multiprocessor structures or Parallel Systems  

Multiprocessor systems with more than one CPU in close communication. 

Tightly coupled machine – processors share reminiscence and a clock; 

conversation typically takes location thru the shared memory. Although 

single-processor systems are most common, multiprocessor structures (also 

known as parallel systems or tightly coupled systems) are growing in 



 

14 

 

Computer System 

Architecture 

 

 

Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self – Instructional Material 

 

importance. Such structures have two or more processors in close 

communication, sharing the pc bus and every now and then the clock, 

memory, and peripheral devices. 

Advantages of parallel system: 

 Increased throughput- By increasing the no of processors, work is 

accomplished in less time. 

 Economical – multiprocessor system can shop more money because 

they can share peripheral, mass storage and power supply. 

 Increased reliability- If one processor fields then the last processors 

will share the work of the failed processors.  

This is acknowledged as graceful degradation or fault tolerant 

1. Increased throughput. By growing the quantity of 

processors, we count on to get more work performed in less time.  

2. Economy of scale. 

3. Increased reliability.  

The ability to continue offering provider proportional to the stage 

of surviving hardware is called graceful degradation. Some 

structures go past swish degradation and are referred to as fault 

tolerant, because they can go through a failure of any single 

component and nevertheless continue operation. 

• The multiple-processor structures in use today are of two 

types.  

• Some structures use asymmetric multiprocessing, in which 

every processor is assigned a particular task.  

A master processor controls the system; the other processors both 

appear to the master for instruction or have predefined tasks. This 

scheme defines a master-slave relationship. The grasp processor 

schedules and allocates work to the slave processors. The most 

frequent structures use symmetric multiprocessing (SMP), in which 

each processor performs all duties within the working system. SMP 

capacity that all processors are peers; no master-slave relationship 

exists between processors. 

 

 

 

 

 

Fig 2.1 Symmetric Multiprocessing Architecture 

Symmetric multiprocessing (SMP) 

 

 Each processor runs a same reproduction of the running 

system. 

 Many processes can run at once except performance 

deterioration. 
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 Most contemporary operating structures support SMP 

Asymmetric multiprocessing 

 Each processor is assigned a unique task; master processor 

schedules and allocates work to slave processors. 

 More common in extraordinarily massive systems 

2.2.2 Desktop Systems  

 Personal computers – pc device committed to a single user. 

 I/O units – keyboards, mice, display screens, small printers. 

 User comfort and responsiveness. 

 Can undertake science developed for larger operating system. 

 Often individuals have sole use of pc and do not want superior CPU 

utilization or safety features. 

May run quite a few exclusive types of working systems  

(Windows, MacOS, UNIX, Linux) 

2.2.3 The Multi programmed systems 

Keeps more than one job in reminiscence simultaneously. When a 

job performs I/O, OS switches to every other job. It will increase 

CPU scheduling. All jobs enter the machine saved in the job pool 

on a disk scheduler brings jobs from pool into memory. Selecting 

the job from job pool is recognized as Job scheduling. Once the job 

loaded into memory, it is ready to execute, if numerous jobs are 

prepared to run at the same time, the machine have to pick among 

them, making this choice is CPU scheduling. The merit of CPU is 

never idle 

2.2.4 Time-Sharing Systems–Interactive Computing 

Also called as multi-tasking system. Multi person, single processor 

OS. Time sharing or multi-tasking permits more than one 

application to run concurrently. Multitasking is the capacity to 

execute extra than one task at the same time. A challenge is a 

program. In multitasking only one CPU is involved, the CPU 

switches from one program to any other so rapidly that it gives the 

look of executing all of the application runs at the same time. 

 

Two types of multitasking 

1. Pre-emptive - Time slice given to CPU with the aid of OS  

2. Cooperative or non-preemptive - In this every program can 

manage the CPU for as lengthy as it wants CPU. 

 

2.2.5 Distributed Systems  

A distributed machine consists of a collection of self sufficient 

computers, linked thru a community and distribution middleware, 

which permits computer systems to coordinate their activities and 

to share the sources of the system, so that users discover the system 

as a single, integrated computing facility. Distribute the 

computation among several physical processors. Loosely coupled 
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device – each processor has its personal neighborhood memory; 

processors speak with one another thru a range of communications 

lines, such as excessive speed buses or telephone lines. 

 

Advantages  

 Resources Sharing 

 Computation speed up – load sharing 

 Reliability 

 Communications 

 Openness 

 Concurrency 

 Scalability 

 Fault Tolerance 

 Transparency 

 

Characteristics of disbursed systems. 

 One component with non-autonomous parts 

 Component shared via customers all the time 

 All resources accessible 

 Software runs in a single process 

 Single Point of control 

 Single Point of failure 

 Multiple self sufficient components 

 Components are no longer shared by means of all users 

 Resources might also not be accessible 

 Software runs in concurrent procedures on distinct processors 

 Multiple Points of control 

 Multiple Points of failure 

 

2.2.6 Client server systems 

• In centralized system, a single machine acts as a server 

device to satisfy request generated by customer systems, this 

structure of specialized distributed gadget is known as client-server 

system. 

• Server structures can be generally categorized as compute 

servers and file servers. The compute-server machine 

provides an interface to which a patron can send a request to 

operate an action (for example, study data); in response, the 

server executes the action and sends returned results to the 

client. A server going for walks a database that responds to 

customer requests for facts is an example of such a system. 

The file-server machine affords a file-system interface 

where consumers can create, update, read, and delete files. 

An example of such a device is an internet server that 

supplies archives to purchasers running net browsers. 
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Figure 2.2 General Structure of Client-Server 

2.2.7 Peer to Peer System 

 The growth of the computer networks leads to the internet. 

Virtually all modem PCs and workstations are capable of running a 

web browser for accessing hypertext documents on the web. 

Several operating systems now include the web browsers, 

electronic mail, and remote login and file transfer clients and 

servers. 

 In this model, clients and servers are not distinguished from one 

another; instead, all nodes within the system are considered peers, 

and each may act as either a client or a server, depending on 

whether it is requesting or providing a service. 

 Peer-to-peer systems offer an advantage over traditional client-

server systems.  

o In a client-server system, the server is a bottleneck;  

o But in a peer-to-peer system, services can be provided by 

several nodes distributed throughout the network. 

 To participate in a peer-to-peer system, a node must first join the 

network of peers. Once a node has joined the network, it can begin 

providing services to—and requesting services from—other nodes 

in the network. 

 Determining what services are available is accomplished in one of 

two general ways: 

o When a node joins a network, it registers its service with a 

centralized lookup service on the network. Any node 

desiring a specific service first contacts this centralized 

lookup service to determine which node provides the 

service. The remainder of the communication takes place 

between the client and the service provider. 

o A peer acting as a client must first discover what node 

provides a desired service by broadcasting a request for the 

service to all other nodes in the network. The node (or 

nodes) providing that service responds to the peer making 

the request. To support this approach, a discovery protocol 

must be provided that allows peers to discover services 

provided by other peers in the network. 

2.2.8 Clustered Systems  

Clustered systems gather together multiple CPUs to accomplish 

computational work. 
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 Clustering allows two or more systems to share storage. 

 Provides high reliability. 

 Clustered Systems - Another type of multiple-CPU system is the 

clustered system.  

 Like multiprocessor systems, clustered systems gather together 

multiple CPUs to accomplish computational work.  

 Clustered systems differ from multiprocessor systems, however, in 

that they are composed of two or more individual systems coupled 

together.  

 Clustered computers share storage and are closely linked via a 

local-area network (LAN) or a faster interconnect network. 

 Clustering is usually used to provide high-availability service; that 

is, service will continue even if one or more systems in the cluster 

fail.  

 High availability is generally obtained by adding a level of 

redundancy in the system. 

 A layer of cluster software runs on the cluster nodes. Each node can 

monitor one or more of the others (over the LAN).  

 If the monitored machine fails, the monitoring machine can take 

ownership of its storage and restart the applications that were 

running on the failed machine.  

 Clustering can be structured asymmetrically or symmetrically. 

o Asymmetric clustering: one server standby while the other 

runs the application. The standby server monitors the active 

machine. 

o Symmetric clustering: all N hosts are running the 

application and they monitor each other. 

 Other forms of clusters include parallel clusters and clustering over 

a wide-area network (WAN).  

 Parallel clusters allow multiple hosts to access the same data on the 

shared storage.  

 Because most operating systems lack support for simultaneous data 

access by multiple hosts, parallel clusters are usually accomplished 

by use of special versions of software and special releases of 

applications.  

 Example: Oracle Parallel Server is a version of Oracle's database 

that has been designed to run on a parallel cluster.  

2.2.9 Real-Time Systems 

 Often used as a control device in a dedicated application such as 

controlling scientific experiments, medical imaging systems, 

industrial control systems, and some display systems. 

 Well-defined fixed-time constraints. 

 Real-Time systems may be either hard or soft real-time. 

 Hard real-time: 

o Secondary storage limited or absent, data stored in short 

term memory, or read-only memory (ROM) 
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o Conflicts with time-sharing systems, not supported by 

general-purpose operating systems. 

 Soft real-time 

o Limited utility in industrial control of robotics 

o Useful in applications (multimedia, virtual reality) 

requiring advanced operating system features. 

2.3 Operating-System Operations 

There are no procedures to execute, no I/O devices to service, and no 

customers to whom to respond, a running gadget will sit down quietly, 

waiting for something to happen. Events are almost constantly signaled by 

the occurrence of an interrupt or a trap. A trap (or an exception) is a 

software-generated interrupt brought on either with the aid of an error (for 

example, division by using zero or invalid memory access) or with the aid 

of a precise request from a consumer program that an operating-system 

carrier be performed. The interrupt-driven nature of an running machine 

defines that system’s accepted structure. For each type of interrupt, 

separate segments of code in the working device decide what action ought 

to be taken. 

An interrupt service routine is supplied to deal with the interrupt. Since the 

operating machine and the customers share the hardware and software 

program assets of the computer system, we need to make sure that an error 

in person software ought to motive problems only for the one application 

running. With sharing, many procedures ought to be adversely affected 

through a worm in one program. For example, if a process gets caught in 

an infinite loop, this loop may want to prevent the right operation of many 

different processes. More refined blunders can occur in a 

multiprogramming system, where one faulty software may alter some other 

program, the information of every other program, or even the working 

machine itself. Without safety towards these sorts of errors, both the pc 

ought to execute only one method at a time or all output must be suspect. A 

right designed working device has to make certain that a flawed (or 

malicious) program cannot motive different programs to execute 

incorrectly. 

2.3.1 Dual-Mode and Multimode Operation 

In order to make certain the appropriate execution of the working system, 

we should be able to distinguish between the execution of operating-

system code and consumer defined code. The method taken through most 

computer systems is to supply hardware help that lets in us to differentiate 

among more than a few modes of execution at the very least; we need two 

separate modes of operation: person mode and kernel mode (also known as 

supervisor mode, machine mode, or privileged mode). A bit, known as the 

mode bit, is introduced to the hardware of the pc to point out the modern-

day mode: kernel (0) or person (1). With the mode bit, we can distinguish 

between a mission that is carried out on behalf of the running device and 

one that is finished on behalf of the user. When the laptop machine is 

executing on behalf of a consumer application, the system is in person 
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mode. However, when a consumer software requests a provider from the 

running device (via a machine call), the device ought to transition from 

person to kernel mode to fulfil the request. As we shall see, this 

architectural enhancement is beneficial for many different factors of device 

operation as well. At system boot time, the hardware starts off evolved in 

kernel mode. The running device is then loaded and starts off evolved 

consumer functions in consumer mode.  

Whenever a trap or interrupt occurs, the hardware switches from person 

mode to kernel mode (that is, modifications the country of the mode bit to 

0). Thus, each time the running device positive aspects manipulate of the 

computer, it is in kernel mode. The gadget usually switches to person mode 

(by placing the mode bit to 1) earlier than passing manage to a user 

program. The twin mode of operation presents us with the skill for 

protecting the running system from errant users—and errant customers 

from one another. We accomplish this safety by designating some of the 

machine directions that may purpose harm as privileged instructions. The 

hardware approves privileged instructions to be finished only in kernel 

mode. If an attempt is made to execute a privileged preparation in person 

mode, the hardware does no longer execute the coaching however instead 

treats it as illegal and traps it to the working system. The coaching to 

switch to kernel mode is an instance of a privileged instruction. Some 

different examples encompass I/O control, timer management, and 

interrupt management.  

As we shall see at some point of the text, there are many extra privileged 

instructions. The concept of modes can be prolonged past two modes (in 

which case the CPU uses greater than one bit to set and take a look at the 

mode). CPUs that support virtualization (Section 16.1) regularly have a 

separate mode to point out when the digital desktop manager (VMM)—and 

the virtualization management software—are in control of the system. In 

this mode, the VMM has more privileges than consumer methods but 

fewer than the kernel. It desires that stage of privilege so it can create and 

control digital machines, altering the CPU state to do so. Sometimes, too, 

exceptional modes are used by way of number kernel components. We 

observe that, as an alternative to modes, the CPU fashion designer may use 

different methods to differentiate operational privileges. The Intel 64 

household of CPUs supports 4 privilege levels, for example, and helps 

virtualization but does now not have a separate mode for virtualization. We 

can now see the life cycle of training execution in a computer system. 

Initial control resides in the operating system, where instructions are 

executed in kernel mode. When control is given to a user application, the 

mode is set to person mode. Eventually, manipulate is switched lower back 

to the operating device through an interrupt, a trap, or a machine call. 

System calls supply the ability for person software to ask the operating 

machine to function duties reserved for the running device on the user 

program’s behalf. A system call is invoked in a range of ways, relying on 

the functionality provided by the underlying processor. 
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In all forms, it is the approach used by way of a procedure to request action 

through the operating system. A gadget call typically takes the form of an 

entice to a precise location in the interrupt vector. This entice can be 

completed via a normal entice instruction, although some structures (such 

as MIPS) have a precise machine name coaching to invoke a device call. 

When a gadget name is executed, it is typically dealt with by using the 

hardware as software interrupts. Control passes via the interrupt vector to 

carrier events in the working system, and the mode bit is set to kernel 

mode. The system-call provider hobbies are a section of the running 

system. The kernel examines the interrupting preparation to decide what 

machine name has occurred; a parameter suggests what kind of carrier the 

person program is requesting. Additional facts wished for the request may 

additionally be handed in registers, on the stack, or in memory (with 

pointers to the memory locations Passed in registers). The kernel verifies 

that the parameters are right and legal, executes the request, and returns 

control to the coaching following the device call. The lack of a hardware-

supported dual mode can cause serious shortcomings in an operating 

system. For instance, MS-DOS was written for the Intel 8088 architecture, 

which has no mode bit and therefore no twin mode. 

A consumer software going for walks awry can wipe out the working 

machine by way of writing over it with data; and a couple of applications 

are capable to write to a device at the same time, with probably disastrous 

results. Modern versions of the Intel CPU do provide dual-mode operation. 

Accordingly, most present day operating systems—such as Microsoft 

Windows 7, as well as UNIX and Linux—take advantage of this dual-

mode function and furnish higher protection for the running system. Once 

hardware safety is in place, it detects blunders that violate modes. 

These errors are generally treated by the running system. If a consumer 

program fails in some way—such as via making an attempt either to 

execute an illegal preparation or to access reminiscence that is now not in 

the user’s address space—then the hardware traps to the running system. 

The trap transfers manage thru the interrupt vector to the operating system, 

just as an interrupt does. When a program error occurs, the running device 

have to terminate the application abnormally. This state of affairs is 

handled by way of the identical code as a user-requested strange 

termination. A gorgeous error message is given, and the memory of the 

program may additionally be dumped. The memory dump is generally 

written to a file so that the user or programmer can observe it and possibly 

right it and restart the program. 

2.3.2 Timer 

A timer can be set to interrupt the computer after a targeted period. The 

length may also be constant (for example, 1/60 second) or variable (for 

example, from 1 millisecond to 1 second). A variable timer is normally 

implemented by a fixed-rate clock and a counter. The working gadget sets 

the counter. Every time the clock ticks, the counter is decremented. When 

the counter reaches 0, an interrupt occurs. For instance, a 10-bit counter 
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with 1-millisecond clock permits interrupts at intervals from 1 millisecond 

to 1,024 milliseconds, in steps of 1 millisecond. 

Before turning over manipulate to the user, the operating machine ensures 

that the timer is set to interrupt. If the timer interrupts, manipulate transfers 

robotically to the working system, which may deal with the interrupt as a 

fatal error or can also provide the program greater time. Clearly, guidelines 

that adjust the content of the timer are privileged. We can use the timer to 

forestall a person program from walking too long. An easy technique is to 

initialize a counter with the amount of time that an application is allowed 

to run. Software with a 7-minute time limit, for example, would have its 

counter initialized to 420. Every second, the timer interrupts, and the 

counter is decremented by way of 1. As long as the counter is positive, 

control is lower back to the user program. When the counter will become 

negative, the running machine terminates the program for exceeding the 

assigned time limit. 

 

 

Check your Progress 

1. What is a Real-Time System? 

2. What are the different operating systems? 

3. What is dual-mode operation? 

4. What are the different types of Real-Time Scheduling? 

5. What are operating system services? 

 

 

 

2.4. ANSWERS TO CHECK YOUR PROGRESS 

 

1. A real time process is a process that must respond to the events 

within a certain time period. A real time operating system is an 

operating system that can run Realtime processes successfully. 

2. Some of the Operating systems is: 

 Batched operating systems 

 Multi-programmed operating systems 

 Timesharing operating systems 

 Distributed operating systems 

 Real-time operating systems. 

3. In order to protect the operating systems and the system programs 

from the malfunctioning programs the two mode operations were 

evolved. 

 System mode 

 User mode 

4. There are two types of Real-Time Scheduling: 

 Hard real-time systems required to complete a critical task 

within a guaranteed amount of time. 

 Soft real-time computing requires that critical processes 

receive priority over less fortunate ones. 



 

23 

 

Computer System 

Architecture 

 

 

Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self – Instructional Material 

 

 

 

5. An Operating System provides services are: 

 Program execution 

 I/O operations 

 File System manipulation 

 Communication 

 Error Detection 

 Resource Allocation 

 Protection 

 

2.5. SUMMARY 
 A distributed machine consists of a collection of self sufficient 

computers, linked via community and distribution middleware, 

which permits computer systems to coordinate their activities and 

to share the sources of the system, so that users discover the system 

as a single, integrated computing facility.  

 In centralized system, a single machine acts as a server device to 

satisfy request generated by customer systems, this structure of 

specialized distributed gadget is known as client-server system. 

 Server structures can be generally categorized as compute servers 

and file servers. 

 A peer acting as a client must first discover what node provides a 

desired service by broadcasting a request for the service to all other 

nodes in the network. 

 Clustered systems gather together multiple CPUs to accomplish 

computational work. 

 In order to make certain the appropriate execution of the working 

system, we should be able to distinguish between the execution of 

operating-system code and consumer defined code. 

 

2.6. KEYWORDS 
 

Symmetric multiprocessing (SMP): Each processor runs a same 

reproduction of the running system. 

Asymmetric multiprocessing: Each processor is assigned a unique 

task; master processor schedules and allocates work to slave 

processors. 

Two types of multitasking: Pre-emptive and Non Pre-emptive 

Job scheduling: Selecting the job from job pool is recognized as Job 

scheduling. 

Timer: A timer can be set to interrupt the computer after a targeted 

period. 
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2.7. SELF ASSESSMENT QUESTIONS AND EXERCISES 
 

Short Answer questions: 

1. What are the Types of Operating System? 

2. What is Desktop System? 

3. What is Time-Sharing Systems? 

4. Explain about Dual-Mode and Multimode Operation? 

5. What are the advantages of Peer to Peer system? 

 

Long Answer questions: 

1. What are the differences between Real Time System and 

Timesharing System? 

2. Explain the Computer-System Architecture? 

3. Explain about Operating System and its Types? 
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UNIT III SYSTEM STRUCTURES 
 

Structure 
3.0 Introduction 
3.1 Objective 

3.2 Operating-System Structure 

3.4 Operating System Services 

3.5. System Calls 
3.6 System Programs 

3.7 Operating-System Design and Implementation 

3.8 Check Your Progress 
3.9 Answers to Check Your Progress Questions 

3.10 Summary 

3.11 Key Words  

3.12 Self-Assessment Questions and Exercises 
3.13 Further Readings 

                                                           

3.0 INTRODUCTION 

The structure of the operating system and how it is connected with the 

system is important because the operating is the first booting in the system. 

The kernel is the core of an operating system. It is the software responsible 

for running programs and providing secure access to the machine's 

hardware. Since there are many programs, and resources are limited, the 

kernel also decides when and how long a program should run. This is 

called scheduling. Accessing the hardware directly can be very complex, 

since there are many different hardware designs for the same type of 

component. Kernels usually implement some level of hardware abstraction 

(a set of instructions universal to all devices of a certain type) to hide the 

underlying complexity from applications and provide a clean and uniform 

interface. The booting is calling of the system with the design and 

implementation of operating system is explained in this unit. 

3.1 OBJECTIVE 

This unit helps the user for  

 Understanding the various services provided by the operating 

system 

 Design an operating system 

 Implementing an operating system 

3.2 OPERATING-SYSTEM STRUCTURE 

A device as large and complicated as a cutting-edge working device ought 

to be engineered carefully if it is to feature properly and be modified 

easily. A common strategy is to partition the challenge into small 

components, or modules, alternatively than have one monolithic system. 



 

26 

 

System Structures 

 

Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self – Instructional Material 

 

Each of these modules should be a well-defined element of the system, 

with cautiously defined inputs, outputs, and functions. 

3.2.1 SIMPLE STRUCTURE 

Many operating structures do not have well-defined structures. Frequently, 

such structures began as small, simple, and limited systems and then grew 

past their authentic scope. MS-DOS is an example of such a system. It was 

at the beginning designed and carried out by using a few humans who had 

no thinking that it would become so popular. It was once written to supply 

the most performance in the least space, so it was once now not carefully 

divided into modules. In MS-DOS, the interfaces and stages of 

performance are now not well separated. For instance, utility packages are 

in a position to get entry to the basic I/O routines to write immediately to 

the display and disk drives. Such freedom leaves MS-DOS susceptible to 

errant (or malicious) programs, inflicting complete system crashes when 

consumer applications fail. Of course, MS-DOS was additionally 

restrained with the aid of the hardware of its era. Because the Intel 8088 

for which it used to be written gives no dual mode and no hardware 

protection, the designers of MS-DOS had no choice but to leave the base 

hardware accessible. Another instance of restrained structuring is the 

unique UNIX running system. Like MS-DOS, UNIX initially was once 

restrained by means of hardware functionality. It consists of two separable 

parts: the kernel and the gadget programs 

 

 

Figure 3.1 MS-DOS layer structures 
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Figure 3.2 Traditional UNIX system structure 

3.2.2 Layered Approach 

With perfect hardware support, working structures can be damaged into 

portions that are smaller and extra splendid than these allowed with the aid 

of the unique MS-DOS and UNIX systems. The operating machine can 

then retain a lot higher manage over the computer and over the purposes 

that make use of that computer. Implementers have more freedom in 

altering the internal workings of the gadget and in growing modular 

running systems. Under a pinnacle down approach, the universal 

functionality and features are determined and are separated into 

components. Information hiding is also important, because it leaves 

programmers free to put into effect the low-level routines as they see fit, 

provided that the exterior interface of the activities stays unchanged and 

that the events itself performs the marketed task. A machine can be made 

modular in many ways. One technique is the layered approach, in which 

the running device is broken into a number of layers (levels). The backside 

layer (layer 0) is the hardware; the perfect (layer N) is the consumer 

interface. 
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Figure 3.3 Layered operating system. 

The main advantage of the layered approach is simplicity of construction 

and debugging. The layers are selected so that each uses functions 

(operations) and services of only lower-level layers. This approach 

simplifies debugging and system verification. The first layer can be 

debugged without any concern for the rest of the system, because, by 

definition, it uses only the basic hardware (which is assumed correct) to 

implement its functions. Once the first layer is debugged, its correct 

functioning can be assumed while the second layer is debugged, and so on. 

If an error is found during the debugging of a particular layer, the error 

must be on that layer, because the layers below it are already debugged. 

Thus, the design and implementation of the system are simplified.  

Each layer is implemented only with operations provided by lower-level 

layers. A layer does not need to know how these operations are 

implemented; it needs to know only what these operations do. Hence, each 

layer hides the existence of certain data structures, operations, and 

hardware from higher-level layers. 

The major difficulty with the layered approach involves appropriately 

defining the various layers. Because a layer can use only lower-level 

layers, careful planning is necessary. For example, the device driver for the 

backing store (disk space used by virtual-memory algorithms) must be at a 

lower level than the memory-management routines, because memory 

management requires the ability to use the backing store. 

3.3.3 Microkernels 

The main function of the microkernel is to provide communication 

between the client program and the various services that are also running in 

user space. Communication is provided through message passing, 

 

Figure 3.4 Architecture of a typical microkernel 

One benefit of the microkernel approach is that it makes extending the 

operating system easier. All new services are added to user space and 

consequently do not require modification of the kernel. When the kernel 
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does have to be modified, the changes tend to be fewer, because the 

microkernel is a smaller kernel. The resulting operating system is easier to 

port from one hardware design to another. The microkernel also provides 

more security and reliability, since most services are running as user—

rather than kernel— processes. If a service fails, the rest of the operating 

system remains untouched 

3.3.4 Modules 

The idea of the design is for the kernel to provide core services while other 

services are implemented dynamically, as the kernel is running. Linking 

services dynamically is preferable to adding new features directly to the 

kernel, which would require recompiling the kernel every time a change 

was made. Thus, for example, we might build CPU scheduling and 

memory management algorithms directly into the kernel and then add 

support for different file systems by way of loadable modules. 

The Solaris operating system structure is organized around a core kernel 

with seven types of loadable kernel modules: 

1. Scheduling classes 

2. File systems 

3. Loadable system calls 

4. Executable formats 

5. STREAMS modules 

6. Miscellaneous 

7. Device and bus drivers 

Linux also uses loadable kernel modules, primarily for supporting device 

drivers and file systems 

  

Figure 3.5 Solaris loadable modules 
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3.3.5 Hybrid Systems 

In practice, very few operating systems adopt a single, strictly defined 

structure. Instead, they combine different structures, resulting in hybrid 

systems that address performance, security, and usability issues. For 

example, both Linux and Solaris are monolithic, because having the 

operating system in a single address space provides very efficient 

performance. However, they are also modular, so that new functionality 

can be dynamically added to the kernel. Windows is largely monolithic as 

well (again primarily for performance reasons), but it retains some 

behavior typical of microkernel systems, including providing support for 

separate subsystems (known as operating-system personalities) that run as 

user-mode processes 

3.3.6 Mac OS X 

The top layers include the Aqua user interface and a set of application 

environments and services. Notably, the Cocoa environment specifies an 

API for the Objective-C programming language, which is used for writing 

Mac OS X applications. Below these layers is the kernel environment, 

which consists primarily of the Mach microkernel and the BSD UNIX 

kernel. Mach provides memory management; support for remote procedure 

calls (RPCs) and interproceses communication (IPC) facilities, including 

message passing; and thread scheduling. The BSD component provides a 

BSD command-line interface, support for networking and file systems, and 

an implementation of POSIX APIs, including Pthreads. In addition to 

Mach and BSD, the kernel environment provides an I/O kit for 

development of device drivers and dynamically loadable modules (which 

Mac OS X refers to as kernel extensions). 

3.3.7 iOS 

iOS is a mobile operating system designed by Apple to run its smartphone, 

the iPhone, as well as its tablet computer, the iPad. iOS is structured on the 

Mac OS X operating system, with added functionality pertinent to mobile 

devices, but does not directly run Mac OS X applications 
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Figure 3.6 The Mac OS X structure 

 

Figure 3.7 Architecture of Apple’s iOS. 

3.3.8 Android 

The Android operating system was designed by the Open Handset Alliance 

(led primarily by Google) and was developed for Android smartphones and 

tablet computers. Whereas iOS is designed to run on Apple mobile devices 

and is close-sourced, Android runs on a variety of mobile platforms and is 

open-sourced, partly explaining its rapid rise in popularity Android is 

similar to iOS in that it is a layered stack of software that provides a rich 

set of frameworks for developing mobile applications. At the bottom of 

this software stack is the Linux kernel, although it has been modified by 

Google and is currently outside the normal distribution of Linux releases 

 

Figure 3.8 Architecture of Google’s Android 
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3.4 OPERATING SYSTEM SERVICES 

An operating system provides an environment for the execution of 

programs. It provides certain services to programs and to the users of those 

programs. The specific services provided, of course, differ from one 

operating system to another, but we can identify common classes. These 

operating system services are provided for the convenience of the 

programmer, to make the programming task easier. Figure 2.1 shows one 

view of the various operating-system services and how they interrelate. 

One set of operating system services provides functions that are helpful to 

the user. 

User interface: Almost all operating systems have a user interface (UI). 

This interface can take several forms. One is a command-line interface 

(CLI), which uses text commands and a method for entering them (say, a 

keyboard for typing in commands in a specific format with specific 

options). Another is a batch interface, in which commands and directives 

to control those commands are entered into files, and those files are 

executed. Most commonly, a graphical user interface (GUI) is used. Here, 

the interface is a window system with a pointing device to direct I/O, 

choose from menus, and make selections and a keyboard to enter text. 

Some systems provide two or all three of these variations. 

Program execution: The system must be able to load a program into 

memory and to run that program. The program must be able to end its 

execution, either normally or abnormally (indicating error). 

I/O operations: A running program may require I/O, which may involve a 

file or an I/O device. For specific devices, special functions may be desired 

(such as recording to a CD or DVD drive or blanking a display screen). For 

efficiency and protection, users usually cannot control I/O devices directly. 

Therefore, the operating system must provide a means to do I/O. 

File-system manipulation: The file system is of particular interest. 

Obviously, programs need to read and write files and directories. They also 

need to create and delete them by name, search for a given file, and list file 

information. Finally, some operating systems include permissions 

management to allow or deny access to files or directories based on file 

ownership. Many operating systems provide a variety of file systems, 

sometimes to allow personal choice and sometimes to provide specific 

features or performance characteristics. 

Communications: There are many circumstances in which one process 

needs to exchange information with another process. Such communication 

may occur between processes that are executing on the same computer or 

between processes that are executing on different computer systems tied 

together by a computer network. Communications may be implemented via 

shared memory, in which two or more processes read and write to a shared 

section of memory, or message passing, in which packets of information in 

predefined formats are moved between processes by the operating system. 
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Error detection: The operating system needs to be detecting and 

correcting errors constantly. Errors may occur in the CPU and memory 

hardware (such as a memory error or a power failure), in I/O devices (such 

as a parity error on disk, a connection failure on a network, or lack of paper 

in the printer), and in the user program (such as an arithmetic overflow, an 

attempt to access an illegal memory location, or a too-great use of CPU 

time). For each type of error, the operating system should take the 

appropriate action to ensure correct and consistent computing. Sometimes, 

it has no choice but to halt the system. At other times, it might terminate an 

error-causing process or return an error code to a process for the process to 

detect and possibly correct. Another set of operating system function exists 

not for helping the user but rather for ensuring the efficient operation of the 

system itself. Systems with multiple users can gain efficiency by sharing 

the computer resources among the users. 

 

Figure 3.9 Services of Operating System 

 

Resource allocation: When there are multiple users or multiple jobs 

running at the same time, resources must be allocated to each of them. The 

operating system manages many different types of resources. Some (such 

as CPU cycles, main memory, and file storage) may have special allocation 

code, whereas others (such as I/O devices) may have much more general 

request and release code. For instance, in determining how best to use the 

CPU, operating systems have CPU-scheduling routines that take into 

account the speed of the CPU, the jobs that must be executed, the number 

of registers available, and other factors. There may also be routines to 

allocate printers, USB storage drives, and other peripheral devices. 

Accounting: We want to keep track of which users use how much and 

what kinds of computer resources. This record keeping may be used for 

accounting (so that users can be billed) or simply for accumulating usage 

statistics. Usage statistics may be a valuable tool for researchers who wish 

to reconfigure the system to improve computing services. 
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Protection and security: The owners of information stored in a multiuser 

or networked computer system may want to control use of that 

information. When several separate processes execute concurrently, it 

should not be possible for one process to interfere with the others or with 

the operating system itself. Protection involves ensuring that all access to 

system resources is controlled. Security of the system from outsiders is 

also important. Such security starts with requiring each user to authenticate 

him or her to the system, usually by means of a password, to gain access to 

system resources. It extends to defending external I/O devices, including 

network adapters, from invalid access attempts and to recording all such 

connections for detection of break-ins. If a system is to be protected and 

secure, precautions must be instituted throughout it. A chain is only as 

strong as its weakest link. 

3.5. SYSTEM CALLS 

System calls provide an interface to the services made available by an 

operating system. These calls are generally available as routines written in 

C and C++, although certain low-level tasks (for example, tasks where 

hardware must be accessed directly) may have to be written using 

assembly-language instructions. Before we discuss how an operating 

system makes system calls available, let’s first use an example to illustrate 

how system calls are used: writing a simple program to read data from one 

file and copy them to another file. The first input that the program will 

need is the names of the two files: the input file and the output file. These 

names can be specified in many ways, depending on the operating-system 

design. One approach is for the program to ask the user for the names. In 

an interactive system, this approach will require a sequence of system 

calls, first to write a prompting message on the screen and then to read 

from the keyboard the characters that define the two files. On mouse-based 

and icon-based systems, a menu of file names is usually displayed in a 

window. 

The user can then use the mouse to select the source name, and a window 

can be opened for the destination name to be specified. This sequence 

requires many I/O system calls. Once the two file names have been 

obtained, the program must open the input file and create the output file. 

Each of these operations requires another system call. Possible error 

conditions for each operation can require additional system calls. When the 

program tries to open the input file, for example, it may find that there is 

no file of that name or that the file is protected against access. 

In these cases, the program should print a message on the console (another 

sequence of system calls) and then terminate abnormally (another system 

call). If the input file exists, then we must create a new output file. We may 

find that there is already an output file with the same name. This situation 

may cause the program to abort (a system call), or we may delete the 

existing file (another system call) and create a new one (yet another system 

call). Another option, in an interactive system, is to ask the user (via a 

sequence of system calls to output the prompting message and to read the 
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response from the terminal) whether to replace the existing file or to abort 

the program. When both files are set up, we enter a loop that reads from 

the input file (a system call) and writes to the output file (another system 

call). Each read and write must return status information regarding various 

possible error conditions. On input, the program may find that the end of 

the file has been reached or that there was a hardware failure in the read 

(such as a parity error). 

 

Figure 3.10 working of System Call 

The write operation may encounter various errors, depending on the output 

device (for example, no more disk space). Finally, after the entire file is 

copied, the program may close both files (another system call), write a 

message to the console or window (more system calls), and finally 

terminate normally (the final system call). This system-call sequence is 

shown in Figure 2.5. As you can see, even simple programs may make 

heavy use of the operating system. Frequently, systems execute thousands 

of system calls per second. Most programmers never see this level of 

detail, however. Typically, application developers design programs 

according to an application programming interface (API). The API 

specifies a set of functions that are available to an application programmer, 

including the parameters that are passed to each function and the return 

values the programmer can expect.  

Three of the most common APIs available to application programmers are 

the Windows API for Windows systems, the POSIX API for POSIX-based 

systems (which include virtually all versions of UNIX, Linux, and Mac 

OSX), and the Java API for programs that run on the Java virtual machine. 

A programmer accesses an API via a library of code provided by the 

operating system. In the case of UNIX and Linux for programs written in 

the C language, the library is called libc. Note that—unless specified—the 

system-call names used throughout this text are generic examples. Each 
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operating system has its own name for each system call. Behind the scenes, 

the functions that make up an API typically invoke the actual system calls 

on behalf of the application programmer.  

There are several reasons for doing so. One benefit concerns program 

portability. An application programmer designing a program using an API 

can expect her program to compile and run on any system that supports the 

same API (although, in reality, architectural differences often make this 

more difficult than it may appear). Furthermore, actual system calls can 

often be more detailed and difficult to work with than the API available to 

an application programmer. Nevertheless, there often exists a strong 

correlation between a function in the API and its associated system call 

within the kernel. In fact, many of the POSIX and Windows APIs are 

similar to the native system calls provided by the UNIX, Linux, and 

Windows operating systems. For most programming languages, the run-

time support system (a set of functions built into libraries included with a 

compiler) provides a system call interface that serves as the link to system 

calls made available by the operating system. The system-call interface 

intercepts function calls in the API and invokes the necessary system calls 

within the operating system. Typically, a number is associated with each 

system call, and the system-call interface maintains a table indexed 

according to these numbers. The system call interface then invokes the 

intended system call in the operating-system kernel and returns the status 

of the system call and any return values. 

The caller need know nothing about how the system call is implemented or 

what it does during execution. Rather, the caller need only obey the API 

and understand what the operating system will do as a result of the 

execution of that system call. Thus, most of the details of the operating-

system interface are hidden from the programmer by the API and are 

managed by the run-time 
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Figure 3.11 using application call () 

Support library. The relationship between an API, the system-call 

interface, and the operating system is shown in Figure 2.6, which illustrates 

how the operating system handles a user application invoking the open() 

system call. System calls occur in different ways, depending on the 

computer in use. Often, more information is required than simply the 

identity of the desired 

System call. The exact type and amount of information vary according to 

the particular operating system and call.  

 

Figure 3.12 Parameter passing 

For example, to get input, we may need to specify the file or device to use 

as the source, as well as the address and length of the memory buffer into 
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which the input should be read. Of course, the device or file and length 

may be implicit in the call. Three general methods are used to pass 

parameters to the operating system. The simplest approach is to pass the 

parameters in registers. In some cases, however, there may be more 

parameters than registers. In these cases, the parameters are generally 

stored in a block, or table, in memory, and the address of the block is 

passed as a parameter in a register (Figure 2.7). This is the approach taken 

by Linux and Solaris. Parameters also can be placed, or pushed, onto the 

stack by the program and popped off the stack by the operating system. 

Some operating systems prefer the block or stack method because those 

approaches do not limit the number or length of parameters being passed. 

3.5.1 Types of System Calls 

System calls can be grouped roughly into five major categories: process 

control, file manipulation, device manipulation, information maintenance, 

and communications. 

 Process control 

o end, abort 

o load, execute 

o create process, terminate process 

o get process attributes, set process attributes 

o wait for time 

o wait event, signal event 

o allocate and free memory 

 File management 

o create file, delete file 

o open, close 

o read, write, reposition 

o get file attributes, set file attributes 

 Device management 

o request device, release device 

o read, write, reposition 

o get device attributes, set device attributes 

o logically attach or detach devices 

 Information maintenance 

o get time or date, set time or date 

o get system data, set system data 

o get process, file, or device attributes 

o set process, file, or device attributes 

 Communications 

o create, delete communication connection 

o send, receive messages 

o transfer status information 

o attach or detach remote devices 
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3.6 SYSTEM PROGRAMS 

 System programs provide a convenient environment for program 

development and execution.   

 This can be divided into: 

o File management - Create, delete, copy, rename, print, 

dump, list, and generally manipulate files and directories 

o Status information 

 Some ask the system for info - date, time, amount of 

available memory, disk space, number of users 

 Others provide detailed performance, logging, and 

debugging information 

 Typically, these programs format and print the 

output to the terminal or other output devices 

 Some systems implement a registry - used to store 

and retrieve configuration information 

o File modification- Several text editors may be available to 

create and modify the content of files stored on disk or other 

storage devices. There may also be special commands to 

search contents of files or perform transformations of the 

text.  

o Programming-language support - Compilers, assemblers, 

debuggers and interpreters for common programming 

languages (such as C, C++, Java, Visual Basic, and PERL) 

are often provided to the user with the operating system. 

o Program loading and execution - Once a program is 

assembled or compiled, it must be loaded into memory to be 

executed. The system may provide absolute loaders, 

relocatable loaders, linkage editors, and overlay loaders. 

Debugging systems for either higher-level languages or 

machine language are needed as well. 

o Communications - Provide the mechanism for creating 

virtual connections among processes, users, and computer 

systems. They allow users to send messages to one 

another’s screens, browse web pages, send electronic-mail 

messages, log in remotely, transfer files from one machine 

to another 

 Most users’ view of the operation system is defined by system 

programs, not the actual system calls 

 Some of them are simply user interfaces to system calls; others are 

considerably more complex 

 In addition to systems programs, most operating systems are 

supplied with programs that are useful in solving common 

problems or performing common operations. Such programs 

include web browsers, word processors and text formatters, 

spreadsheets, database systems, compilers, plotting and statistical-

analysis packages, and games. These programs are known as 

system utilities or application programs. 
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3.7 OPERATING-SYSTEM DESIGN AND 

IMPLEMENTATION  

 

Early operating systems were written in assembly language. Now, although 

some operating systems are still written in assembly language, most are 

written in a higher-level language such as C or an even higher-level 

language such as C++. Actually, an operating system can be written in 

more than one language. 

 

The lowest levels of the kernel might be assembly language. Higher-level 

routines might be in C, and system programs might be in C or C++, in 

interpreted scripting languages like PERL or Python, or in shell scripts. In 

fact, a given Linux distribution probably includes programs written in all 

of those languages. 

 

The first system that was not written in assembly language was probably 

the Master Control Program (MCP) for Burroughs computers. MCP was 

written in a variant of ALGOL. MULTICS, developed at MIT, was written 

mainly in the system programming language PL/1. The Linux and 

Windows operating system kernels are written mostly in C, although there 

are some small sections of assembly code for device drivers and for saving 

and restoring the state of registers. 

 

The advantages of using a higher-level language, or at least a systems 

implementation Language, for implementing operating systems are the 

same as those gained when the language is used for application programs: 

the code can be written faster, is more compact, and is easier to understand 

and debug.  

 

In addition, improvements in compiler technology will improve the 

generated code for the entire operating system by simple recompilation. 

Finally, an operating system is far easier to port—to move to some other 

hardware— if it is written in a higher-level language. For example, MS-

DOS was written in Intel 8088 assembly language. Consequently, it runs 

natively only on the Intel X86 family of CPUs. (Note that although MS-

DOS runs natively only on Intel X86, emulators of the X86 instruction set 

allow the operating system to run on other CPUs—but more slowly, and 

with higher resource use. The only possible disadvantages of implementing 

an operating system in a higher-level language are reduced speed and 

increased storage requirements.  

 

This, however, is no longer a major issue in today’s systems. Although an 

expert assembly-language programmer can produce efficient small 

routines, for large programs a modern compiler can perform complex 

analysis and apply sophisticated optimizations that produce excellent code. 

Modern processors have deep pipelining and multiple functional units that 

can handle the details of complex dependencies much more easily than can 

the human mind. As is true in other systems, major performance 
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improvements in operating systems are more likely to be the result of 

better data structures and algorithms than of excellent assembly-language 

code. In addition, although operating systems are large, only a small 

amount of the code is critical to high performance; the interrupt handler, 

I/O manager, memory manager, and CPU scheduler are probably the most 

critical routines.  

 

Check your Progress 

1. What are system calls? 

2. What are the types of system calls? 

3. What are the types of Loadable kernel modules? 

4. What is the difference between microkernel and macro kernel? 

5. What are System Programs? 

 

 

3.8. ANSWERS TO CHECK YOUR PROGRESS 

 

1. System calls provide the interface between a process and the 

operating system. System calls for modern Microsoft windows 

platforms are part of the win32 API, which is available for all the 

compilers written for Microsoft windows. 

2. System calls can be grouped roughly into five major categories:  

 process control 

 file manipulation 

 device manipulation 

 information maintenance 

 communications. 

3. A core kernel with seven types of loadable kernel modules: 

 Scheduling classes  

 File systems  

 Loadable system calls  

 Executable formats  

 STREAMS modules  

 Miscellaneous 

 Device and bus drivers 

 

4. Some of the difference are: 

 Micro-Kernel : A micro-kernel is a minimal operating 

system that performs only the essential functions of an 

operating system. All other operating system functions are 

performed by system processes. 

 Monolithic : A monolithic operating system is one where 

all operating system code is in a single executable image 

and all operating system code runs in system mode. 

5. System programs provide a convenient environment for program 

development and execution. This can be divided into: 

 File management 

 Status information 
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 File modification 

 Programming-language support 

 Program loading and execution 

 Communications 

 

3.9. SUMMARY 
 The main function of the microkernel is to provide 

communication between the client program and the various 

services that are also running in user space.  

 The idea of the design is for the kernel to provide core services 

while other services are implemented dynamically, as the kernel 

is running. 

 The Solaris operating system structure is organized around a 

core kernel with seven types of loadable kernel modules 

 iOS is a mobile operating system designed by Apple to run its 

smartphone, the iPhone, as well as its tablet computer, the iPad. 

 The Android operating system was designed by the Open 

Handset Alliance (led primarily by Google) and was developed 

for Android smartphones and tablet computers. 

 System calls can be grouped roughly into five major categories: 

process control, file manipulation, device manipulation, 

information maintenance, and communications. 

 

3.10. KEYWORDS 
 

 Program execution: The system must be able to load a program 

into memory and to run that program. The program must be able to 

end its execution, either normally or abnormally (indicating error). 

 I/O operations: A running program may require I/O, which may 

involve a file or an I/O device.  

 Resource allocation: When there are multiple users or multiple 

jobs running at the same time, resources must be allocated to each 

of them.  

 System calls: System calls provide an interface to the services 

made available by an operating system. 

3.11. SELF ASSESSMENT QUESTIONS AND 

EXERCISES 
 

Short Answer questions: 

1. What are Modules? 

2. What is layered approach? 

3. What are Hybrid systems? 

4. What is Resource allocation? 

5. Explain about Layered operating system? 
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Long Answer questions: 

1. Explain about system calls and its types? 

2. Explain about Operating-System Design and his Implementation? 

3. Explain about system programs and its types? 
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BLOCK – II   INTRODUCTION 

 

UNIT IV PROCESS CONCEPT 
 

Structure 
4.0 Introduction 

4.1 Objective 

4.2 Process Concept 

4.3 Process Scheduling 

4.4Operations on Processes 

4.4.1 Process Creation 

4.4.2 Process Termination 

4.5 Inter process Communication 

4.6 Answers to Check Your Progress Questions 

4.7 Summary 

4.8 Key Words 

4.9 Self Assessment Questions and Exercises 

4.10 Further Readings 

 

4.0 INTRODUCTION 

he scheduling of process is a tedious task and needs to organized to 

perform this effectively the operating system introduces a concept process 

scheduling and the various operations on process in explaining by how it is 

performed. The process scheduling is the activity of the process manager 

that handles the removal of the running process from the CPU and the 

selection of another process on the basis of a particular strategy. 

 

Process scheduling is an essential part of a Multiprogramming operating 

systems. Such operating systems allow more than one process to be loaded 

into the executable memory at a time and the loaded process shares the 

CPU using time multiplexing. The inter process communication between 

the system is also explained.  

4.1 OBJECTIVE 

This unit helps to understand the 

 Process scheduling concepts 

 Various operations on process 

 Inter process communication 
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4.2 PROCESS CONCEPT 

A batch system executes jobs, whereas a time-shared system has user 

programs, or tasks. Even on a single-user system, a user maybe able to run 

several programs at one time: a word processor, a Web browser, and an e-

mail package. And even if a user can execute only one program at a time, 

such as on an embedded device that does not support multitasking, the 

operating system may need to support its own internal programmed 

activities, such as memory management. In many respects, all these 

activities are similar, so we call all of them processes. The terms job and 

process are used almost interchangeably in this text. Although we 

personally prefer the term process, much of operating-system theory and 

terminology was developed during a time when the major activity of 

operating systems was job processing. It would be misleading to avoid the 

use of commonly accepted terms that include the word job simply because 

process has superseded job. 

4.2.1The Process 

A program becomes a process when an executable file is loaded into 

memory. Two common techniques for loading executable files are double-

clicking an icon representing the executable file and entering the name of 

the executable file on the command line (as in prog.exe or a. out). 

Although two processes may be associated with the same program, they 

are nevertheless considered two separate execution sequences. For 

instance, several users may be running different copies of the mail 

program, or the same user may invoke many copies of the web browser 

program. Each of these is a separate process; and although the text sections 

are equivalent, the data, heap, and stack sections vary. It is also common to 

have a process that spawns many processes as it runs. Note that a process 

itself can be an execution environment for other code. The Java 

programming environment provides a good example. In most 

circumstances, an executable Java program is executed within the Java 

virtual machine (JVM). The JVM executes as a process that interprets the 

loaded Java code and takes actions (via native machine instructions) on 

behalf of that code. 

For example, to run the compiled Java program. Class, we would enter 

java Program the command java runs the JVM as an ordinary process, 

which in turns executes the Java program in the virtual machine. The 

concept is the same as simulation, except that the code, instead of being 

written for a different instruction set, is written in the Java language 
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Figure 4.1 Processes in a Memory 

4.2.2 Process State 

As a process executes, it changes state. The state of a process is defined in 

part by the current activity of that process. A process may be in one of the 

following states: 

• New. The process is being created. 

• Running. Instructions are being executed. 

• Waiting. The process is waiting for some event to occur (such as an I/O 

completion or reception of a signal). 

• Ready. The process is waiting to be assigned to a processor. 

• Terminated. The process has finished execution. 

These names are arbitrary, and they vary across operating systems. The 

states that they represent are found on all systems, however. Certain 

operating systems also more finely delineate process states. It is important 

to realize that only one process can be running on any processor at any 

instant. Many processes may be ready and waiting, however. The state 

diagram corresponding to these states is presented in Figure 

4.2.3 Process Control Block 

Each process is represented in the operating system by a process control 

block (PCB)—also called a task control block. APCB is shown in Figure 



 

47 

 

Process Concept 

Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self – Instructional Material 

 

 

 

3.3. It contains many pieces of information associated with a specific 

process, including these: 

 Process state. The state may be new, ready, running, waiting, 

halted, and so on. 

 Program counter. The counter indicates the address of the next 

instruction to be executed for this process. 

 CPU registers. The registers vary in number and type, depending 

on the computer architecture. They include accumulators, index 

registers, stack pointers, and general-purpose registers, plus any 

condition-code information. Along with the program counter, this 

state information must be saved when an interrupt occurs, to allow 

the process to be continued correctly afterward  

 CPU-scheduling information. This information includes a process 

priority, pointers to scheduling queues, and any other scheduling 

parameters.  

 Memory-management information. This information may 

include such items as the value of the base and limit registers and 

the page tables, or the segment tables, depending on the memory 

system used by the operating system. 

 

Figure 4.2 Process State 

 Accounting information. This information includes the amount of 

CPU and real time used, time limits, account numbers, job or 

process numbers, and so on. 

 I/O status information. This information includes the list of I/O 

devices allocated to the process, a list of open files, and so on. 



 

48 

 

Process Concept 

Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self – Instructional Material 

 

 

Figure 4.3 Process control Block 

 

 

Figure 4.4 CPU switch from process to process 
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4.2.4 Threads 

The process model discussed so far has implied that a process is a program 

that performs a single thread of execution. For example, when a process is 

running a word-processor program, a single thread of instructions is being 

executed. This single thread of control allows the process to perform only 

one task at a time. The user cannot simultaneously type in characters and 

run the spell checker within the same process, for example. Most modern 

operating systems have extended the process concept to allow a process to 

have multiple threads of execution and thus to perform more than one task 

at a time. This feature is especially beneficial on multicore systems, where 

multiple threads can run in parallel. On a system that supports threads, the 

PCB is expanded to include information for each thread. Other changes 

throughout the system are also needed to support threads.  

4.3 PROCESS SCHEDULING 

The objective of multiprogramming is to have some process running at all 

times, to maximize CPU utilization. The objective of time sharing is to 

switch then CPU among processes so frequently that users can interact 

with each program while it is running. To meet these objectives, the 

process scheduler selects an available process for program execution on the 

CPU. For a single-processor system, there will never be more than one 

running process. If there are more processes, the rest will have to wait until 

the CPU is free and can be rescheduled. 

4.4 OPERATIONS ON PROCESSES 

The processes in most systems can execute concurrently, and they may be 

created and deleted dynamically. Thus, these systems must provide a 

mechanism for process creation and termination. In this section, we 

explore the mechanisms involved in creating processes and illustrate 

process creation on UNIX and Windows systems 

4.4.1 Process Creation 

During the course of execution, a process may create several new 

processes. As mentioned earlier, the creating process is called a parent 

process, and the new processes are called the children of that process. Each 

of these new processes may in turn create other processes, forming a tree 

of processes. Most operating systems (including UNIX, Linux, and 

Windows) identify processes according to a unique process identifier (or 

pid), which is typically an integer number. The pid provides a unique value 

for each process in the system, and it can be used as an index to access 

various attributes of a process within the kernel. Figure 3.8 illustrates a 

typical process tree for the Linux operating system, showing the name of 

each process and it’s pid. (We use the term process rather loosely, as Linux 

prefers the term task instead.) The init process (which always has a pid of 

1) serves as the root parent process for all user processes. Once the system 

has booted, the init process can also create various user processes, such as 

a web or print server, an ssh server, and the like.  
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The kthreadd process is responsible for creating additional processes that 

perform tasks on behalf of the kernel (in this situation, khelper and 

pdflush). The sshd process is responsible for managing clients that connect 

to the system by using ssh (which is short for secure shell). The login 

process is responsible for managing clients that directly log onto the 

system. In this example, a client has logged on and is using the bash shell, 

which has been assigned pid 8416. Using the bash command-line interface, 

this user has created the process ps as well as the emacs editor. On UNIX 

and Linux systems, we can obtain a listing of processes by using the ps 

command. For example, the command ps –el will list complete information 

for all processes currently active in the system. 

In general, when a process creates a child process, that child process will 

need certain resources (CPU time, memory, files, I/O devices) to 

accomplish its task. A child process may be able to obtain its resources 

directly from the operating system, or it may be constrained to a subset of 

the resources of the parent process. The parent may have to partition its 

resources among its children, or it may be able to share some resources 

(such as memory or files) among several of its children. Restricting a child 

process to a subset of the parent’s resources prevents any process from 

overloading the system by creating too many child processes. In addition to 

supplying various physical and logical resources, the parent process may 

pass along initialization data (input) to the child process. For example, 

consider a process whose function is to display the contents of a file —say, 

image.jpg—on the screen of a terminal. When the process is created, it will 

get, as an input from its parent process, the name of the file image.jpg. 

Using that file name, it will open the file and write the contents out. It may 

also get the name of the output device. Alternatively, some operating 

systems pass resources to child processes. On such a system, the new 

process may get two open files, image.jpg and the terminal device, and 

may simply transfer the datum between the two. When a process creates a 

new process, two possibilities for execution exist: 

1. The parent continues to execute concurrently with its children. 

2. The parent waits until some or all of its children have terminated. 

There are also two address-space possibilities for the new process: 

1. The child process is a duplicate of the parent process (it has the same 

program and data as the parent). 

2. The child process has a new program loaded into it.  

 In UNIX, as we’ve seen, each process is identified by its process 

identifier, which is a unique integer. A new process is created by the fork() 

system call. The new process consists of a copy of the address space of the 

original process. This mechanism allows the parent process to 

communicate easily with its child process. Both processes (the parent and 

the child) continue execution at the instruction after the fork(), with one 

difference: the return code for the fork() is zero for the new (child) process, 
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whereas the (nonzero) process identifier of the child is returned to the 

parent. After a fork() system call, one of the two processes typically uses 

the exec() system call to replace the process’s memory space with a new 

program.  

The exec() system call loads a binary file into memory (destroying the 

memory image of the program containing the exec() system call) and starts 

its execution. In this manner, the two processes are able to communicate 

and then go their separate ways. The parent can then create more children; 

or, if it has nothing else to do while the child runs, it can issue a wait() 

system call to move itself off the ready queue until the termination of the 

child. Because the call to exec() overlays the process’s address space with a new 

program, the call to exec() does not return control unless an error occurs.  

 The only difference is that the value of pi value greater than zero (in fact, 

it is the actual pid of the child process). The child process inherits 

privileges and scheduling attributes from the parent, as well certain 

resources, such as open files. The child process then overlays its address 

space with the UNIX command /bin/ls (used to get a directory listing) 

using the execlp() system call (execlp() is a version of the exec() system 

call). The parent waits for the child process to complete with the wait() 

system call. When the child process completes (by either implicitly or 

explicitly invoking exit()), the parent process resumes from the call to 

wait(), where it completes using the exit() system call. 

 Of course, there is nothing to prevent the child from not invoking exec() 

and instead continuing to execute as a copy of the parent process. In this 

scenario, the parent and child are concurrent processes running the same 

code instructions. Because the child is a copy of the parent, each process 

has its own copy of any data. As an alternative example, we next consider 

process creation in Windows. Processes are created in the Windows API 

using the CreateProcess() function, which is similar to fork() in that a 

parent creates a new child process. However, whereas fork() has the child 

process inheriting the address space of its parent, CreateProcess() requires 

loading a specified program into the address space of the child process at 

process creation. Furthermore, whereas fork() is passed no parameters, 

CreateProcess() expects no fewer than ten parameters. 

 We opt for many of the default values of the ten parameters passed to 

CreateProcess(). Readers interested in pursuing the details of process 

creation and management in the Windows API are encouraged to consult 

the bibliographical notes at the end of this chapter. The two parameters 

passed to the CreateProcess() function are instances of the 

STARTUPINFO and PROCESS INFORMATION structures. 

STARTUPINFO specifies many properties of the new process, such as 

window size and appearance and handles to standard input and output files. 

The PROCESS INFORMATION structure contains a handle and the 

identifiers to the newly created process and its thread. We invoke the 

ZeroMemory() function  to allocate memory for each of these structures 

before proceeding with CreateProcess(). 
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The first two parameters passed to CreateProcess() are the application 

name and command-line parameters. If the application name is NULL (as 

it is in this case), the command-line parameter specifies the application to 

load. In this instance, we are loading the Microsoft Windows mspaint.exe 

application. Beyond these two initial parameters, we use the default 

parameters for inheriting process and thread handles as well as specifying 

that there will be no creation flags. Also use the parent’s existing 

environment block and starting directory. Last, we provide two pointers to 

the STARTUPINFO and PROCESS - INFORMATION structures created 

at the beginning of the program.  

4.4.2 Process Termination 

A process terminates when it finishes executing its final statement and asks 

the operating system to delete it by using the exit() system call. At that 

point, then process may return a status value (typically an integer) to its 

parent process (via the wait() system call). All the resources of the 

process—including physical and virtual memory, open files, and I/O 

buffers—are deallocated by the operating system. Termination can occur in 

other circumstances as well. A process can cause the termination of 

another process via an appropriate system call (for example, 

TerminateProcess() in Windows). 

 Usually, such a system call can be invoked only by the parent of the process 

that is to be terminated. Otherwise, users could arbitrarily kill each other’s jobs. 

Note that a parent needs to know the identities of its children if it is to 

terminate them. Thus, when one process creates a new process, the identity 

of the newly created process is passed to the parent. A parent may 

terminate the execution of one of its children for a variety of reasons, such 

as these: 

 The child has exceeded its usage of some of the 

resources that it has been allocated. (To determine 

whether this has occurred, the parent must have a 

mechanism to inspect the state of its children.) 

 The task assigned to the child is no longer required. 

 The parent is exiting, and the operating system does 

not allow a child to continue if its parent terminates. 

Some systems do not allow a child to exist if its parent has terminated. In 

such systems, if a process terminates (either normally or abnormally), then 

all its children must also be terminated. 

 This phenomenon, referred to as cascading termination, is normally 

initiated by the operating system. To illustrate process execution and 

termination, consider that, in Linux and UNIX systems, we can terminate a 

process by using the exit() system call, providing an exit status as a 

parameter: 

              /* exit with status 1 */ 
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              exit(1); 

 

In fact, under normal termination, exit() may be called either directly (as 

shown above) or indirectly (by a return statement in main()). A parent 

process may wait for the termination of a child process by using the wait() 

system call. The wait() system call is passed a parameter that allows the 

parent to obtain the exit status of the child. This system call also returns the 

process identifier of the terminated child so that the parent can tell which 

of its children has terminated: 

           pid t pid; 

           int status; 

           pid = wait(&status);  

When a process terminates, its resources are deallocated by the operating 

system. However, its entry in the process table must remain there until the 

parent calls wait(), because the process table contains the process’s exit 

status. A process that has terminated, but whose parent has not yet called 

wait(), is known as a zombie process. All processes transition to this state 

when they terminate, but generally they exist as zombies only briefly. 

Once the parent calls wait(), the process identifier of the zombie process 

and its entry in the process table are released. Now consider what would 

happen if a parent did not invoke wait() and instead terminated, thereby 

leaving its child processes as orphans. Linux and UNIX address this 

scenario by assigning the init process as the new parent to orphan 

processes. The init process periodically invokes wait(), thereby allowing 

the exit status of any orphaned process to be collected and releasing the 

orphan’s process identifier and process-table entry. 

4.5 INTERPROCESS COMMUNICATION 

Processes executing concurrently in the operating system may be either 

independent processes or cooperating processes. A process is independent 

if it cannot affect or be affected by the other processes executing in the 

system. Any process that does not share data with any other process is 

independent. A process is cooperating if it can affect or be affected by the 

other processes executing in the system. Clearly, any process that shares 

data with other processes is a cooperating process. There are several 

reasons for providing an environment that allows process cooperation: 

 • Information sharing. Since several users may be interested in the same 

piece of information (for instance, a shared file), we must provide an 

environment to allow concurrent access to such information. 

• Computation speedup. If we want a particular task to run faster, we 

must break it into subtasks, each of which will be executing in parallel with 
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the others. Notice that such a speedup can be achieved only if the computer 

has multiple processing cores. 

• Modularity. We may want to construct the system in a modular fashion, 

dividing the system functions into separate processes or threads, as we 

discussed in Chapter 2. 

• Convenience. Even an individual user may work on many tasks at the 

same time. For instance, a user may be editing, listening to music, and 

compiling in parallel. 

Cooperating processes require an interprocess communication (IPC) 

mechanism that will allow them to exchange data and information. There 

are two fundamental models of interprocess communication: shared 

memory and message passing. In the shared-memory model, a region of 

memory that is shared by cooperating processes is established. Processes 

can then exchange information by reading and writing data to the shared 

region. In the message-passing model, communication takes place by 

means of messages exchanged between the cooperating processes.  

Both of the models just mentioned are common in operating systems, and 

many systems implement both. Message passing is useful for exchanging 

smaller amounts of data, because no conflicts need be avoided. Message 

passing is also easier to implement in a distributed system than shared 

memory. (Although there are systems that provide distributed shared 

memory, we do not consider them in this text 

Shared memory can be faster than message passing, since message-passing 

systems are typically implemented using system calls and thus require the 

more time-consuming task of kernel intervention. In shared-memory 

systems, system calls are required only to establish shared memory 

regions. Once shared memory is established, all accesses are treated as 

routine memory accesses, and no assistance from the kernel is required. 

Recent research on systems with several processing cores indicates that 

message passing provides better performance than shared memory on such 

systems. Shared memory suffers from cache coherency issues, which arise 

because shared data migrate among the several caches. As the number of 

processing cores on systems increases, it is possible that we will see 

message passing as the preferred mechanism for IPC. In the remainder of 

this section, we explore shared-memory and message passing systems in 

more detail. 

4.5.1 Shared-Memory Systems 

Interprocess communication using shared memory requires communicating 

processes to establish a region of shared memory. Typically, a shared-

memory region resides in the address space of the process creating the 

shared-memory segment. Other processes that wish to communicate using 

this shared-memory segment must attach it to their address space. Recall 

that, normally, the operating system tries to prevent one process from 

accessing another process’s memory. Shared memory requires that two or 
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more processes agree to remove this restriction. They can then exchange 

information by reading and writing data in the shared areas. The form of 

the data and the location are determined by these processes and are not 

under the operating system’s control. The processes are also responsible 

for ensuring that they are not writing to the same location simultaneously. 

To illustrate the concept of cooperating processes, let’s consider the 

producer–consumer problem, which is a common paradigm for 

cooperating processes.  

A producer process produces information that is consumed by a consumer 

process. For example, a compiler may produce assembly code that is 

consumed by an assembler. The assembler, in turn, may produce object 

modules that are consumed by the loader. The producer–consumer problem 

also provides a useful metaphor for the client–server paradigm. Generally 

think of a server as a producer and a client as a consumer. For example, a 

webserver produces (that is, provides) HTML files and images, which are 

consumed (that is, read) by the client web browser requesting the resource. 

One solution to the producer–consumer problem uses shared memory. To 

allow producer and consumer processes to run concurrently, we must have 

available a buffer of items that can be filled by the producer and emptied 

by the consumer. This buffer will reside in a region of memory that is 

shared by the producer and consumer processes. A producer can produce 

one item while the consumer is consuming another item. The producer and 

consumer must be synchronized, so that the consumer does not try to 

consume an item that has not yet been produced. Two types of buffers can 

be used. The unbounded buffer places no practical limit on the size of the 

buffer. 

 The consumer may have to wait for new items, but the producer can 

always produce new items. The bounded buffer assumes a fixed buffer 

size. In this case, the consumer must wait if the buffer is empty, and the 

producer must wait if the buffer is full.Let’s look more closely at how the 

bounded buffer illustrates interprocess communication using shared 

memory. The following variables reside in a region of memory shared by 

the producer and consumer processes: 

#define BUFFER SIZE 10 

typedef struct { 

. . . 

}item; 

item buffer[BUFFER SIZE]; 

int in = 0; 

int out = 0; 

The shared buffer is implemented as a circular array with two logical 

pointers: in and out. The variable in points to the next free position in the 
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buffer; out points to the first full position in the buffer. The buffer is empty 

when in == out; the buffer is full when ((in + 1) % BUFFER SIZE) == out. 

The producer process has a local variable next produced in which the new 

item to be produced is stored. The consumer process has a local variable 

next consumed in which the item to be consumed is stored. 

 This scheme allows at most BUFFER SIZE − 1 items in the buffer at the 

same time. We leave it as an exercise for you to provide a solution in 

which BUFFER SIZE items can be in the buffer at the same time. In 

Section 3.5.1, illustrates the POSIX API for shared memory. One issue this 

illustration does not address concerns the situation in which both the 

producer process and the consumer process attempt to access the shared 

buffer concurrently. In Chapter 5, we discuss how synchronization among 

cooperating processes can be implemented effectively in a shared memory 

environment. 

4.5.2 Message-Passing Systems 

The scheme requires that these processes share a region of memory and 

that the code for accessing and manipulating the shared memory be written 

explicitly by the application programmer. Another way to achieve the same 

effect is for the operating system to provide the means for cooperating 

processes to communicate with each other via a message-passing facility. 

Message passing provides a mechanism to allow processes to communicate 

and to synchronize their actions without sharing the same address space. It 

is particularly useful in a distributed environment, where the 

communicating processes may reside on different computers connected by 

a network. For example, an Internet chat program could be designed so that 

chat participants communicate with one another by exchanging messages. 

A message-passing facility provides at least two operations: send(message) 

receive(message) Messages sent by a process can be either fixed or 

variable in size. If only fixed-sized messages can be sent, the system-level 

implementation is straightforward. 

 This restriction, however, makes the task of programming more difficult. 

Conversely, variable-sized messages require a more complex system level 

implementation, but the programming task becomes simpler. This is a 

common kind of tradeoff seen throughout operating-system design. If 

processes P and want to communicate, they must send messages to and 

receive messages from each other: a communication link must exist 

between them. This link can be implemented in a variety of ways. We are 

concerned here not with the link’s physical implementation (such as shared 

memory, hardware bus, or network, which are covered in Chapter 17) but 

rather with its logical implementation. Here are several methods for 

logically implementing a link and the send()/receive() operations: 

• Direct or indirect communication 

• Synchronous or asynchronous communication 

• Automatic or explicit buffering 
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4.5.2.1 Naming 

Processes that want to communicate must have a way to refer to each 

other. They can use either direct or indirect communication. Under direct 

communication, each process that wants to communicate must explicitly 

name the recipient or sender of the communication. In this scheme, the 

send() and receive() primitives are defined as: 

• send(P, message)—Send a message to process P. 

• receive(Q, message)—Receive a message from process Q. 

A communication link in this scheme has the following properties: 

• A link is established automatically between every pair of processes that 

want to communicate. The processes need to know only each other’s 

identity to communicate. 

• A link is associated with exactly two processes. 

• Between each pair of processes, there exists exactly one link.  

This scheme exhibits symmetry in addressing; that is, both the sender 

process and the receiver process must name the other to communicate. A 

variant of this scheme employs asymmetry in addressing. Here, only the 

sender names the recipient; the recipient is not required to name the sender. 

In this scheme, the send() and receive() primitives are defined as follows: 

• send(P, message)—Send a message to  

• receive(id, message)—Receive a message from any process. The process 

P. variable id is set to the name of the process with which communication 

has taken place. The disadvantage in both of these schemes (symmetric and 

asymmetric) is the limited modularity of the resulting process definitions. 

Changing the identifier of a process may necessitate examining all other 

process definitions. All references to the old identifier must be found, so 

that they can be modified to the new identifier. In general, any such hard-

coding techniques, where identifiers must be explicitly stated, are less 

desirable than techniques involving indirection, as described next. With 

indirect communication, the messages are sent to and received from 

mailboxes, or ports. Mailbox can be viewed abstractly as an object into 

which messages can be placed by processes and from which messages can 

be removed. 

 Each mailbox has a unique identification. For example, POSIX message 

queues use an integer value to identify a mailbox. A process can 

communicate with another process via a number of different mailboxes, 

but two processes can communicate only if they have a shared mailbox. 

The send() and receive() primitives are defined as follows: 

• send(A, message)—Send a message to mailbox A. 

• receive(A, message)—Receive a message from mailbox A. 
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In this scheme, a communication link has the following properties: 

• A link is established between a pair of processes only if both members of 

the pair have a shared mailbox.  

• A link may be associated with more than two processes. 

• Between each pair of communicating processes, a number of different 

links may exist, with each link corresponding to one mailbox. Now 

suppose that processes P1, P2, and P3 all share mailbox A. Process P1 

sends a message to A, while both P2 and P3 execute a receive() from A. 

Which process will receive the message sent by P1? The answer depends 

on which of the following methods we choose: 

• Allow a link to be associated with two processes at most. 

• Allow at most one process at a time to execute a receive() operation. 

• Allow the system to select arbitrarily which process will receive the 

message (that is, either P2 or P3, but not both, will receive the message). 

The system may define an algorithm for selecting which process will 

receive the message (for example, round robin, where processes take turns 

receiving messages). The system may identify the receiver to the sender. A 

mailbox may be owned either by a process or by the operating system.  

If the mailbox is owned by a process (that is, the mailbox is part of the 

address space of the process), then we distinguish between the owner 

(which can only receive messages through this mailbox) and the user 

(which can only send messages to the mailbox). Since each mailbox has a 

unique owner, there can be no confusion about which process should 

receive a message sent to this mailbox. When a process that owns a 

mailbox terminates, the mailbox disappears. Any process that subsequently 

sends a message to this mailbox must be notified that the mailbox no 

longer exists. In contrast, a mailbox that is owned by the operating system 

has an existence of its own. It is independent and is not attached to any 

particular process. The operating system then must provide a mechanism 

that allows a process to do the following: 

• Create a new mailbox. 

• Send and receive messages through the mailbox. 

• Delete a mailbox. 

The process that creates a new mailbox is that mailbox’s owner by default. 

Initially, the owner is the only process that can receive messages through 

this mailbox. However, the ownership and receiving privilege may be 

passed to other processes through appropriate system calls. Of course, this 

provision could result in multiple receivers for each mailbox. 
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4.5.2.2 Synchronization 

Communication between processes takes place through calls to send() and 

receive() primitives. There are different design options for implementing 

each primitive. Message passing may be either blocking or nonblocking— 

also known as synchronous and asynchronous. (Throughout this text, you 

will encounter the concepts of synchronous and asynchronous behavior in 

relation to various operating-system algorithms.)  

• Blocking send. The sending process is blocked until the message is 

received by the receiving process or by the mailbox. 

• Nonblocking send. The sending process sends the message and resumes 

operation. 

• Blocking receive. The receiver blocks until a message is available. 

• Nonblocking receive. The receiver retrieves either a valid message or a 

null. 

Different combinations of send() and receive() are possible.When both 

send() and receive() are blocking, we have a rendezvous between the 

sender and the receiver. The solution to the producer–consumer problem 

becomes trivial when we use blocking send() and receive() statements. The 

producer merely invokes the blocking send() call and waits until the 

message is delivered to either the receiver or the mailbox. Likewise, when 

the consumer invokes receive(), it blocks until a message is available.  

4.5.2.3 Buffering 

Whether communication is direct or indirect, messages exchanged by 

communicating processes reside in a temporary queue. Basically, such 

queues can be implemented in three ways:  

  Zero capacity. The queue has a maximum length of zero; thus, the 

link cannot have any messages waiting in it. In this case, the sender 

must block until the recipient receives the message. 

• Bounded capacity. The queue has finite length n; thus, at most n 

messages can reside in it. If the queue is not full when a new message is 

sent, the message is placed in the queue (either the message is copied or a 

pointer to the message is kept), and the sender can continue execution 

without waiting. The link’s capacity is finite, however. If the link is full, 

the sender must block until space is available in the queue. 

• Unbounded capacity. The queue’s length is potentially infinite; thus, 

any number of messages can wait in it. The sender never blocks. The zero-

capacity case is sometimes referred to as a message system with no 

buffering. The other cases are referred to as systems with automatic 

buffering 
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Check your Progress 

1. What is a process? 

2. What are the states of a process? 

3. What are the process control block? 

4. What is Thread? 

5. What is Process Termination? 

 

 

4.6 ANSWERS TO CHECK YOUR PROGRESS 
 

1. A program in execution is called a process. Or it may also be called 

a unit of work. A process needs some system resources as CPU 

time, memory, files, and i/o devices to accomplish the task. Each 

process is represented in the operating system by a process control 

block or task control block (PCB). Processes are of two types 

 Operating system processes 

 User processes 

 

2. The states of process are: 

 New 

 Running 

 Waiting 

 Ready 

 Terminated 

3. Process Control Block (PCB) contains many pieces of information 

associated with a specific process, including these: 

 Process state. 

 Program counter. 

 CPU registers 

 CPU-scheduling information. 

 Memory-management information. 

 Accounting information 

 I/O status information. 

4. A thread is a flow of execution through the process code, with its 

own program counter that keeps track of which instruction to 

execute next, system registers which hold its current working 

variables.  

5. A process terminates when it finishes executing its final statement 

and asks the operating system to delete it by using the exit () 

system call. At that point, then process may return a status value 

(typically an integer) to its parent process (via the wait () system 

call). All the resources of the process—including physical and 

virtual memory, open files, and I/O buffers—are deallocated by the 

operating system. Termination can occur in other circumstances as 

well. A process can cause the termination of another process via an 
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appropriate system call (for example, Terminate Process () in 

Windows). 

 

4.7. SUMMARY 
 The objective of multiprogramming is to have some process 

running at all times, to maximize CPU utilization.  

 A program becomes a process when an executable file is loaded 

into memory. 

 A process terminates when it finishes executing its final 

statement and asks the operating system to delete it by using the 

exit() system call.  

 Interprocess communication using shared memory requires 

communicating processes to establish a region of shared 

memory.  

 Communication between processes takes place through calls to 

send() and receive() primitives. 

 The queue’s length is potentially infinite; thus, any number of 

messages can wait in it.  

 

 

4.8. KEYWORDS 
CPU registers. The registers vary in number and type, depending on the 

computer architecture. They include accumulators, index registers, stack 

pointers, and general-purpose registers, plus any condition-code 

information. Along with the program counter, this state information must 

be saved when an interrupt occurs, to allow the process to be continued 

correctly afterward  

Information sharing. Since several users may be interested in the same 

piece of information (for instance, a shared file), we must provide an 

environment to allow concurrent access to such information. 

CPU-scheduling information. This information includes a process 

priority, pointers to scheduling queues, and any other scheduling 

parameters.  

Memory-management information. This information may include such 

items as the value of the base and limit registers and the page tables, or the 

segment tables, depending on the memory system used by the operating 

system. 

 

4.9. SELF ASSESSMENT QUESTIONS AND 

EXERCISES 
 

Short Answer questions: 

1. What is interprocess communication? 

2. What is process creation? 

3. Explain about shared-memory systems? 

4. What is Synchronization? 
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5. Explain the capacity of Buffering? 

 

Long Answer questions: 

1. Explain about Operations on processes? 

2. Explain about Interprocess Communication ? 
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UNIT V PROCESS SCHEDULING     
 

Structure 

5.0 Introduction 

5.1 Objective 

5.2 Process Scheduling 

5.3 Scheduling Criteria 

5.4 Scheduling Algorithms 

5.5 Multiple-Processor Scheduling 

5.6 Answers to Check Your Progress Questions 

5.7 Summary 

5.8 Key Words 

5.9 Self Assessment Questions and Exercises 

5.10 Further Readings 

 

5.0 INTRODUCTION 

The scheduling of the process in the operating system has to perform with 

some criteria and there are many scheduling algorithms which work under 

different constraints so as to schedule the process effectively. The OS 

maintains all PCBs in Process Scheduling Queues. The OS maintains a 

separate queue for each of the process states and PCBs of all processes in 

the same execution state are placed in the same queue. When the state of a 

process is changed, its PCB is unlinked from its current queue and moved 

to its new state queue. This unit covers the scheduling algorithms with an 

illustration of its working. The multiple processor scheduling is covered 

with its working. 

 

5.1 OBJECTIVE 

This unit covers the following 

 Learn the scheduling algorithms 

 Understand the scheduling concepts 

 Explore the multiple processor scheduling 

5.2 PROCESS SCHEDULING 

5.2.1 Scheduling concepts 

As processes enter the system, they are put into a job queue, which consists 

of all processes in the system. The processes that are residing in main 

memory and are ready and waiting to execute are kept on a list called the 

ready queue. This queue is generally stored as a linked list. A ready-queue 

header contains pointers to the first and final PCBs in the list. Each PCB 
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includes a pointer field that points to the next PCB in the ready queue. The 

system also includes other queues. When a process is allocated the CPU, it 

executes for a while and eventually quits, is interrupted, or waits for the 

occurrence of a particular event, such as the completion of an I/O request. 

Suppose the process makes an I/O request to a shared device, such as a 

disk. Since there are many processes in the system, the disk may be busy 

with the I/O request of some other process. The process therefore may 

have to wait for the disk. The list of processes waiting for a particular I/O 

device is called a device queue.  

 

Figure 5.1 Ready Queue and I/O devices queue 

A common representation of process scheduling is a queueing diagram, 

such as that in Figure 5.1. Each rectangular box represents a queue. Two 

types of queues are present: the ready queue and a set of device queues. 

The circles represent the resources that serve the queues, and the arrows 

indicate the flow of processes in the system. A new process is initially put 

in the ready queue. It waits there until it is selected for execution, or 

dispatched. Once the process is allocated the CPU and is executing, one of 

several events could occur:  

• The process could issue an I/O request and then be placed in an I/O 

queue. 

• The process could create a new child process and wait for the child’s 

termination. 

• The process could be removed forcibly from the CPU, as a result of an 

interrupt, and be put back in the ready queue. In the first two cases, the 
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process eventually switches from the waiting state to the ready state and is 

then put back in the ready queue. A process continues 

This cycle until it terminates, at which time it is removed from all queues 

and has its PCB and resources deallocated. 

 

Figure 5.2 Process Scheduling Queuing 

5.3 SCHEDULING CRITERIA 

Different CPU-scheduling algorithms have different properties, and the 

choice of a particular algorithm may favor one class of processes over 

another. In choosing which algorithm to use in a particular situation, we 

must consider the properties of the various algorithms. Many criteria have 

been suggested for comparing CPU-scheduling algorithms. Which 

characteristics are used for comparison can make a substantial difference in 

which algorithm is judged to be best. The criteria include the following: 

• CPU utilization. We want to keep the CPU as busy as possible. 

Conceptually, CPU utilization can range from 0 to 100 percent. In a real 

system, it should range from 40 percent (for a lightly loaded system) to 90 

percent (for a heavily loaded system). 

• Throughput. If the CPU is busy executing processes, then work is being 

done. One measure of work is the number of processes that are completed 

per time unit, called throughput. For long processes, this rate may be one 

process per hour; for short transactions, it may be ten processes per second. 

• Turnaround time. From the point of view of a particular process, the 

important criterion is how long it takes to execute that process. The 

interval from the time of submission of a process to the time of completion 

is the turnaround time. Turnaround time is the sum of the periods spent 

waiting to get into memory, waiting in the ready queue, executing on the 

CPU, and doing I/O. 



 

66 

 

Process Scheduling      

Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self – Instructional Material 

 

• Waiting time. The CPU-scheduling algorithm does not affect the amount 

of time during which a process executes or does I/O. It affects only the 

amount of time that a process spends waiting in the ready queue. Waiting 

time is the sum of the periods spent waiting in the ready queue. 

• Response time. In an interactive system, turnaround time may not be the 

best criterion. Often, a process can produce some output fairly early and 

can continue computing new results while previous results are being output 

to the user. Thus, another measure is the time from the submission of a 

request until the first response is produced. This measure, called response 

time, is the time it takes to start responding, not the time it takes to output 

the response.  

The turnaround time is generally limited by the speed of the output device. 

It is desirable to maximize CPU utilization and throughput and to minimize 

turnaround time, waiting time, and response time. In most cases, we 

optimize the average measure. However, under some circumstances, we 

prefer to optimize the minimum or maximum values rather than the 

average. For example, to guarantee that all users get good service, we may 

want to minimize the maximum response time. Investigators have 

suggested that, for interactive systems (such as desktop systems), it is more 

important to minimize the variance in the response time than to minimize 

the average response time. A system with reasonable and predictable 

response time may be considered more desirable than a system that is 

faster on the average but is highly variable. 

 However, little work has been done on CPU-scheduling algorithms that 

minimize variance. As we discuss various CPU-scheduling algorithms in 

the following section, we illustrate their operation. An accurate illustration 

should involve many processes, each a sequence of several hundred CPU 

bursts and I/O bursts. For simplicity, though, we consider only one CPU 

burst (in milliseconds) per process in our examples.  

5.4 SCHEDULING ALGORITHMS 

5.4.1 First-Come, First-Served Scheduling 

By far the simplest CPU-scheduling algorithm is the first-come, first-

served (FCFS) scheduling algorithm. With this scheme, the process that 

requests the CPU first is allocated the CPU first. The implementation of 

the FCFS policy is easily managed with a FIFO queue. When a process 

enters the ready queue, its PCB is linked onto the tail of the queue. When 

the CPU is free, it is allocated to the process at the head of the queue. The 

running process is then removed from the queue. The code for FCFS 

scheduling is simple to write and understand. On the negative side, the 

average waiting time under the FCFS policy is often quite long. Consider 

the following set of processes that arrive at time 0, with the length of the 

PU burst given in milliseconds: 
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Figure 5.3 Waiting time 

 

 

Figure 5.4 Turn Around Time 

5.4.2 Shortest-Job-First Scheduling 

A different approach to CPU scheduling is the shortest-job-first (SJF) 

scheduling algorithm. This algorithm associates with each process the 

length of the process’s next CPU burst. When the CPU is available, it is 

assigned to the process that has the smallest next CPU burst. If the next 

CPU bursts of two processes are the same, FCFS scheduling is used to 

break the tie. Note that a more appropriate term for this scheduling method 

would be the shortest-next- CPU-burst algorithm, because scheduling 

depends on the length of the next CPU burst of a process, rather than its 

total length. We use the term SJF because most people and textbooks use 

this term to refer to this type of scheduling. As an example of SJF 

scheduling, consider the following set of processes, with the length of the 

CPU burst given in millisecond 
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Example 

 

 

  

 

5.4.3 Priority Scheduling  

The SJF algorithm is a special case of the general priority-scheduling 

algorithm. Apriority is associated with each process, and the CPUis 

allocated to the process with the highest priority. Equal-priority processes 

are scheduled in FCFS order. An SJF algorithm is simply a priority 

algorithm where the priority (p) is the inverse of the (predicted) next CPU 

burst. The larger the CPU burst, the lower the priority, and vice versa. Note 

that we discuss scheduling in terms of high priority and low priority. 

Priorities are generally indicated by some fixed range of numbers, such as 

0 to 7 or 0 to 4,095. However, there is no general agreement on whether 0 

is the highest or lowest priority. Some systems use low numbers to 

represent low priority; others use low numbers for high priority. This 

difference can lead to confusion. In this text, we assume that low numbers 

represent high priority. As an example, consider the following set of 
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processes, assumed to have arrived at time 0 in the order P1, P2, · · ·, P5, 

with the length of the CPU burst given in milliseconds  

Example 

 

5.4.4 Round-Robin Scheduling 

The round-robin (RR) scheduling algorithm is designed especially for 

timesharing systems. It is similar to FCFS scheduling, but pre-emption is 

added to enable the system to switch between processes. A small unit of 

time, called a time quantum or time slice, is defined. A time quantum is 

generally from 10 to 100 milliseconds in length. The ready queue is treated 

as a circular queue. The CPU scheduler goes around the ready queue, 

allocating the CPU to each process for a time interval of up to 1 time 

quantum. To implement RR scheduling, we again treat the ready queue as 

a FIFO queue of processes. New processes are added to the tail of the 

ready queue. The CPU scheduler picks the first process from the ready 

queue, sets a timer to interrupt after 1 time quantum, and dispatches the 

process. One of two things will then happen. The process may have a CPU 

burst of less than 1 time quantum. In this case, the process itself will 

release the CPU voluntarily.  

The scheduler will then proceed to the next process in the ready queue. If 

the CPU burst of the currently running process is longer than 1 time 

quantum, the timer will go off and will cause an interrupt to the operating 

system. A context switch will be executed, and the process will be put at 

the detail of the ready queue. The CPU scheduler will then select the next 

process in the ready queue. The average waiting time under the RR policy 
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is often long. Consider the following set of processes that arrive at time 0, 

with the length of the CPU burst given in milliseconds: 

Example given time quantum=4ms 

 

 

 

5.4.5 Multilevel Queue Scheduling 

A multilevel queue scheduling algorithm partitions the ready queue into 

several separate queues (Figure 6.6). The processes are permanently 

assigned to one queue, generally based on some property of the process, 

such as memory size, process priority, or process type. Each queue has its 

own scheduling algorithm. For example, separate queues might be used for 

foreground and background processes. The foreground queue might be 

scheduled by an RR algorithm, while the background queue is scheduled 

by an FCFS algorithm. In addition, there must be scheduling among the 

queues, which is commonly implemented as fixed-priority pre-emptive 

scheduling. For example, the foreground queue may have absolute priority 

over the background queue. Let’s look at an example of a multilevel queue 

scheduling algorithm with five queues, listed below in order of priority: 

1. System processes 

2. Interactive processes 

3. Interactive editing processes 

4. Batch processes 
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5. Student processes  

 

Figure 5.4 Multi level queues 

Each queue has absolute priority over lower-priority queues. No process in 

the batch queue, for example, could run unless the queues for system 

processes, interactive processes, and interactive editing processes were all 

empty. If an interactive editing process entered the ready queue while a 

batch process was running, the batch process would be pre-empted. 

Another possibility is to time-slice among the queues. Here, each queue 

gets a certain portion of the CPU time, which it can then schedule among 

its various processes. For instance, in the foreground–background queue 

example, the foreground queue can be given 80 percent of the CPU time 

for RR scheduling among its processes, while the background queue 

receives 20 percent of the CPU to give to its processes on an FCFS basis. 

5.4.6 Multilevel Feedback Queue Scheduling 

The multilevel feedback queue scheduling algorithm, in contrast, allows a 

process to move between queues. The idea is to separate processes 

according to the characteristics of their CPU bursts. If a process uses too 

much CPU time, it will be moved to a lower-priority queue. This scheme 

leaves I/O-bound and interactive processes in the higher-priority queues. In 

addition, a process that waits too long in a lower-priority queue may be 

moved to a higher-priority queue. This form of aging prevents starvation.  

The scheduler first executes processes in queue 0. Only when queue 0 is 

empty will it execute processes in queue 1. Similarly, processes in queue 2 

will be executed only if queues 0 and 1 are empty. A process that arrives 

for queue 1 will preempt a process in queue 2. A process in queue 1 will in 

turn be preempted by a process arriving for queue 0. A process entering the 

ready queue is put in queue 0. A process in queue 0 is given a time 

quantum of 8 milliseconds. If it does not finish within this time, it is moved 
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to the tail of queue 1. If queue 0 is empty, the process at the head of queue 

1 is given a quantum of 16 milliseconds. If it does not complete, it is 

preempted and is put into queue 2. Processes in queue 2 are run on an 

FCFS basis but are run only when queues 0 and 1 are empty. This 

scheduling algorithm gives highest priority to any process with a CPU 

burst of 8 milliseconds or less. Such a process will quickly get the CPU, 

finish its CPU burst, and go off to its next I/O burst. Processes that need 

more than8 but less than 24 milliseconds are also served quickly, although 

with lower priority than shorter processes. Long processes automatically 

sink to queue 2 and are served in FCFS order with any CPU cycles left 

over from queues 0 and 1. In general, a multilevel feedback queue 

scheduler is defined by the following parameters: 

• The number of queues 

• The scheduling algorithm for each queue 

• The method used to determine when to upgrade a process to a higher 

priority queue 

• The method used to determine when to demote a process to a lower 

priority queue 

• The method used to determine which queue a process will enter when 

that process needs service 

The definition of a multilevel feedback queue scheduler makes it the most 

general CPU-scheduling algorithm. It can be configured to match a 

specific system under design. Unfortunately, it is also the most complex 

algorithm, since defining the best scheduler requires some means by which 

to select values for all the parameters. 

5.4.7 Thread Scheduling 

User-level threads are managed by a thread library, and the kernel is 

unaware of them. To run on a CPU, user-level threads must ultimately be 

mapped to an associated kernel-level thread, although this mapping may be 

indirect and may use a lightweight process (LWP). In this section, we 

explore scheduling issues involving user-level and kernel-level threads and 

offer specific examples of scheduling for Pthreads  

Contention Scope  

One distinction between user-level and kernel-level threads lies in how 

they are scheduled. On systems implementing the many-to-one  and many-

to-many models, the thread library schedules user-level threads to run on 

an available LWP. This scheme is known as process contention scope 

(PCS), since competition for the CPU takes place among threads belonging 

to the same process. (When we say the thread library schedules user 

threads onto available LWPs, we do not mean that the threads are actually 

running on a CPU. That would require the operating system to schedule the 

kernel thread onto a physical CPU.) To decide which kernel-level thread to 
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schedule onto a CPU, the kernel uses system-contention scope (SCS). 

Competition for the CPU with SCS scheduling takes place among all 

threads the system. Systems using the one-to-one model, such as Windows, 

Linux, and Solaris, schedule threads using only SCS. Typically, PCS is 

done according to priority—the scheduler selects the runnable thread with 

the highest priority to run. User-level thread priorities  are set by the 

programmer and are not adjusted by the thread library, although some 

thread libraries may allow the programmer to change the priority of a 

thread. It is important to note that PCS will typically preempt the thread 

currently running in favor of a higher-priority thread; however, there is no 

guarantee of time slicing (Section 6.3.4) among threads of equal priority.  

5.4.8 Pthread Scheduling 

We provided a sample POSIX Pthread program in Section 4.4.1, along 

with an introduction to thread creation with Pthreads. Now, we highlight 

the POSIX Pthread API that allows specifying PCS or SCS during thread 

creation. Pthreads identifies the following contention scope values: 

• PTHREAD SCOPE PROCESS schedules threads using PCS scheduling. 

• PTHREAD SCOPE SYSTEM schedules threads using SCS scheduling. 

On systems implementing the many-to-many model, the PTHREAD 

SCOPE PROCESS policy schedules user-level threads onto available 

LWPs. The number of LWPs is maintained by the thread library, perhaps 

using scheduler activations (Section 4.6.5). The PTHREAD SCOPE 

SYSTEM scheduling policy will create and bind an LWP for each user-

level thread on many-to-many systems, effectively mapping threads using 

the one-to-one policy. The Pthread IPC provides two functions for 

getting—and setting—the contention scope policy: 

• pthread attr setscope(pthread attr t *attr, int scope) 

• pthread attr getscope(pthread attr t *attr, int *scope) 

The first parameter for both functions contains a pointer to the attribute set 

for the thread. The second parameter for the pthread attr setscope() 

function is passed either the value, indicating how the contention scope is 

to be set. In the case of pthread attr getscope(), this second parameter 

contains a pointer to an int value that is set to the current value of the 

contention scope. If an error occurs, each of these functions returns a 

nonzero value. In Figure 6.8, we illustrate a Pthread scheduling API. The 

program first determines the existing contention scope and sets it to 

PTHREAD SCOPE SYSTEM. It then creates five separate threads that 

will run using the SCS scheduling policy. Note that on some systems, only 

certain contention scope values are allowed. For example, Linux and Mac 

OS X systems allow only PTHREAD SCOPE SYSTEM. 
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5.5 MULTIPLE-PROCESSOR SCHEDULING 

Our discussion thus far has focused on the problems of scheduling the CPU 

in a system with a single processor. If multiple CPUs are available, load 

sharing becomes possible—but scheduling problems become 

correspondingly more complex. Many possibilities have been tried; and as 

we saw with single processor CPU scheduling, there is no one best 

solution. Here, we discuss several concerns in multiprocessor scheduling. 

We concentrate on systems in which the processors are identical—

homogeneous —in terms of their functionality. We can then use any 

available processor to run any process in the queue. Note, however, that 

even with homogeneous multiprocessors, there are sometimes limitations 

on scheduling. Consider a system with an I/O device attached to a private 

bus of one processor. Processes that wish to use that device must be 

scheduled to run on that processor. 

5.5.1 Approaches to Multiple-Processor Scheduling 

One approach to CPU scheduling in a multiprocessor system has all 

scheduling decisions, I/O processing, and other system activities handled 

by a single processor—the master server. The other processors execute 

only user code. This asymmetric multiprocessing is simple because only 

one processor accesses the system data structures, reducing the need for 

data sharing second approach uses symmetric multiprocessing (SMP), 

where each processor is self-scheduling. All processes may be in a 

common ready queue, or each processor may have its own private queue of 

ready processes. Regardless scheduling proceeds by having the scheduler 

for each processor examine the ready queue and select a process to 

execute. As we saw in Chapter 5, if we have multiple processors trying to 

access and update a common data structure, the scheduler must be 

programmed carefully. We must ensure that two separate processors do not 

choose to schedule the same process and that processes are not lost from 

the queue. Virtually all modern operating systems support SMP, including 

Windows, Linux, and Mac OS X. In the remainder of this section, we 

discuss issues concerning SMP systems. 

5.5.2 Processor Affinity 

Consider what happens to cache memory when a process has been running 

on a specific processor. The data most recently accessed by the process 

populate the cache for the processor. As a result, successive memory 

accesses by then process are often satisfied in cache memory. Now 

consider what happens if the process migrates to another processor. The 

contents of cache memory must be invalidated for the first processor, and 

the cache for the second processor must be repopulated. Because of the 

high cost of invalidating and repopulating caches, most SMP systems try to 

avoid migration of processes from one processor to another and instead 

attempt to keep a process running on the same processor. This is known as 

processor affinity—that is, a process has an affinity for the processor on 

which it is currently running. Processor affinity takes several forms.  
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When an operating system has a policy of attempting to keep a process 

running on the same processor—but not guaranteeing that it will do so—

we have a situation known as soft affinity. Here, the operating system will 

attempt to keep a process on a single processor, but it is possible for a 

process to migrate between processors. In contrast, some systems provide 

system calls that support hard affinity, thereby allowing a process to 

specify a subset of processors on which it may run.  

Many systems provide both soft and hard affinity. For example, Linux 

implements soft affinity, but it also provides the sched setaffinity() system 

call, which supports hard affinity. The main-memory architecture of a 

system can affects processor affinity issues. Typically, this occurs in 

systems containing combined CPU and memory boards. The CPUs on a 

board can access the memory on that board faster than they can access 

memory on other boards in the system. 

If the operating system’s CPU scheduler and memory-placement 

algorithms work together, then a process that is assigned affinity to a 

particular CPU can be allocated memory on the board where that CPU 

resides. This example also shows that operating systems are frequently not 

as cleanly defined and implemented as described in operating-system 

textbooks. Rather, the ―solid lines‖ between sections of an operating 

system are frequently only ―dotted lines,‖ with algorithms creating 

connections in ways aimed at optimizing performance and reliability. 

5.5.3 Load Balancing 

On SMP systems, it is important to keep the workload balanced among all 

processors to fully utilize the benefits of having more than one processor 

Otherwise; one or more processors may sit idle while other processors 

have high workloads, along with lists of processes awaiting the CPU. Load 

balancing attempts to keep the workload evenly distributed across all 

processors in a SMP system. It is important to note that load balancing is 

typically necessary only on systems where each processor has its own 

private queue of eligible processes to execute. On systems with a common 

run queue, load balancing is often unnecessary, because once a processor 

becomes idle, it immediately extracts a runnable process from the common 

run queue. It is also important to note, however, that in most contemporary 

operating systems supporting SMP, each processor does have a private 

queue of eligible processes. 

There are two general approaches to load balancing: push migration and 

pull migration. With push migration, a specific task periodically checks the 

load on each processor and—if it finds an imbalance—evenly distributes 

the load by moving (or pushing) processes from overloaded to idle or less-

busy processors. Pull migration occurs when an idle processor pulls a 

waiting task from a busy processor. Push and pull migration need not be 

mutually exclusive and are in fact often implemented in parallel on load-

balancing systems. As is often the case in systems engineering, there is no 

absolute rule concerning what policy is best. Thus, in some systems, an 

idle processor always pulls a process from a non-idle processor. In other 
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systems, processes are moved only if the imbalance exceeds a certain 

threshold. 

Otherwise, one or more processors may sit idle while other processors have 

high workloads, along with lists of processes awaiting the CPU. Load 

balancing attempts to keep the workload evenly distributed across all 

processors in an SMP system. It is important to note that load balancing is 

typically necessary only on systems where each processor has its own 

private queue of eligible processes to execute. On systems with a common 

run queue, load balancing is often unnecessary, because once a processor 

becomes idle, it immediately extracts a runnable process from the common 

run queue. It is also important to note, however, that in most contemporary 

operating systems supporting SMP, each processor does have a private 

queue of eligible processes. 

Figure 5.5 NUMA and CPU Scheduling 

5.5.4 Multicore Processors 

Traditionally, SMP systems have allowed several threads to run 

concurrently by providing multiple physical processors. However, a recent 

practice in computer hardware has been to place multiple processor cores 

on the same physical chip, resulting in a multicore processor. Each core 

maintains its architectural state and thus appears to the operating system to 

be a separate physical processor. SMP systems that use multicore 

processors are faster and consume less power than systems in which each 

processor has its own physical chip. Multicore processors may complicate 

scheduling issues. Let’s consider how this can happen. Researchers have 

discovered that when a processor accesses memory, it spends a significant 

amount of time waiting for the data to become available. This situation, 

known as a memory stall, may occur for various reasons, such as a cache 

miss (accessing data that are not in cache memory). To remedy this 

situation, many recent hardware designs have implemented multithreaded 

processor cores in which two (or more) hardware threads are assigned to 
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each core. That way, if one thread stalls while waiting for memory, the 

core can switch to another thread.  

Thus, on a dual-threaded, dual-core system, four logical processors are 

presented to the operating system. The UltraSPARC T3 CPU has sixteen 

cores per chip and eight hardware threads per core. From the perspective of 

the operating system, there appear to be 128 logical processors. In general, 

there are two ways to multithread a processing core: coarse-grained and 

fine-grained multithreading. 

 

 

Figure 5.6 Multi-threaded multi core systems 

 

Figure5.7 Memory Stall 

 With coarse-grained multithreading, a thread executes on a processor until 

a long-latency event such as a memory stall occurs. Because of the delay 

caused by the long-latency event, the processor must switch to another 

thread to begin execution. However, the cost of switching between threads 

is high, since the instruction pipeline must be flushed before the other 

thread can begin execution on the processor core. Once this new thread 

begins execution, it begins filling the pipeline with its instructions. Fine-

grained (or interleaved) multithreading switches between threads at a much 

finer level of granularity—typically at the boundary of an instruction cycle. 

However, the architectural design of fine-grained systems includes logic 

for thread switching. As a result, the cost of switching between threads is 

small.  
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Check your Progress 

1. What is RR scheduling algorithm? 

2. Briefly explain FCFS? 

3. What are the process Scheduling Algorithms? 

4. What is Multiple-Level Queues Scheduling? 

 

5.6 ANSWERS TO CHECK YOUR PROGRESS 
 

1. RR (round-robin) scheduling algorithm is primarily aimed for time-

sharing systems. A circular queue is a setup in such a way that the 

CPU scheduler goes around that queue, allocating CPU to each 

process for a time interval of up to around 10 to 100 milliseconds. 

2. FCFS stands for First-come, first-served. It is one type of 

scheduling algorithm. In this scheme, the process that requests the 

CPU first is allocated the CPU first. Implementation is managed by 

a FIFO queue. 

3. Some of the process scheduling algorithms are: 

 First-Come, First-Served Scheduling (FCFS) 

 Shortest-Job-First Scheduling 

 Priority Scheduling 

 Round-Robin Scheduling 

 Multilevel Queue Scheduling 

 Multilevel Feedback Queue Scheduling 

 Thread Scheduling 

 Pthread Scheduling 

4. Multiple-level queues is not an independent scheduling algorithm 

but it makes use of other existing algorithms to group and schedule 

jobs with common characteristic. 

 Multiple queues are maintained for processes with common 

characteristic. 

 Each queue can have its own scheduling algorithms. 

 Priorities are assigned to each queue. 

 

 5.7. SUMMARY 

 The scheduling of the process in the operating system has to 

perform with some criteria and there are many scheduling 

algorithms which work under different constraints so as to 

schedule the process effectively.  

  Different CPU-scheduling algorithms have different properties, 

and the choice of a particular algorithm may favor one class of 

processes over another. 

  A different approach to CPU scheduling is the shortest-job-first 

(SJF) scheduling algorithm. This algorithm associates with each 

process the length of the process’s next CPU burst. 

  The round-robin (RR) scheduling algorithm is designed 

especially for timesharing systems. 
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  A multilevel queue scheduling algorithm partitions the ready 

queue into several separate queues 

 The turnaround time is generally limited by the speed of the 

output device.   

  

5.8. KEYWORDS 
 

CPU utilization. We want to keep the CPU as busy as possible. 

Conceptually, CPU utilization can range from 0 to 100 percent. In a 

real system, it should range from 40 percent (for a lightly loaded 

system) to 90 percent (for a heavily loaded system). 

Throughput. If the CPU is busy executing processes, then work is 

being done. One measure of work is the number of processes that are 

completed per time unit, called throughput. For long processes, this 

rate may be one process per hour; for short transactions, it may be ten 

processes per second. 

Response time. In an interactive system, turnaround time may not be 

the best criterion. Waiting time. The CPU-scheduling algorithm does 

not affect the amount of time during which a process executes or does 

I/O.  

 

5.9. SELF ASSESSMENT QUESTIONS AND EXERCISES 

 

Short Answer questions: 

1. What are Multicore Processors? 

2. What are Load Balancing? 

3. What is Process Scheduling? 

4. Explain about SJF? 

5. What are the queues in Multilevel Queue Scheduling? 

 

Long Answer questions: 

1. Explain about Scheduling Algorithms? 

2. Explain about Multilevel Queue Scheduling and its order of 

Priority? 
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BLOCK – III 

 SYNCHRONIZATION 

 

UNIT -VI SYNCHRONIZATION
 

Structure 

6.0 Introduction 

6.1 Objective 

6.2 The Critical-Section Problem 

6.3 Synchronization Hardware 

6.4 Semaphores 

6.5 Semaphores -Classic Problems of Synchronization 

6.6 Semaphores -Classic Problems of Synchronization -Monitors 

6.7 Answers to Check Your Progress Questions 

6.8 Summary 

6.9 Key Words 

6.10 Self Assessment Questions and Exercises 

6.11 Further Readings 

 

6.0 INTRODUCTION 

The allocation of process plays a pivotal role in the operating system and 

the time in which the execution is performed is also calculated. This unit 

addresses the critical section problem with regard to synchronization and 

the usage of semaphores with the classical synchronization problem 

6.1 OBJECTIVE 

This unit helps to understand the 

 Classical problem of synchronization 

 Semaphores critical section problem 

 Critical section problem 

 Synchronization hardware 

6.2 THE CRITICAL-SECTION PROBLEM 

We begin our consideration of process synchronization by discussing the 

so called critical-section problem. Consider a system consisting of n 

processes {P0, P1, ..., Pn−1}. Each process has a segment of code, called a 

critical section, in which the process may be changing common variables, 

updating a table, writing a file, and so on. The important feature of the 

system is that, when one process is executing in its critical section, no 

other process is allowed to execute in its critical section. That is, no two 

processes are executing in their critical sections at the same time. The 

critical-section problem is to design a protocol that the processes can use to 
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cooperate. Each process must request permission to enter its critical 

section. The section of code implementing this request is the entry section. 

The critical section may be followed by an exit section. The remaining 

code is the remainder section. code. A solution to the critical-section 

problem must satisfy the following three requirements: 

1. Mutual exclusion. If process Pi is executing in its critical section, then 

no other processes can be executing in their critical sections. 

2. Progress. If no process is executing in its critical section and some 

processes wish to enter their critical sections, then only those processes 

that are not executing in their remainder sections can participate in 

deciding which will enter its critical section next, and this selection cannot 

be postponed indefinitely. 

3. Bounded waiting. There exists a bound, or limit, on the number of 

times that other processes are allowed to enter their critical sections after a 

process has made a request to enter its critical section and before that 

request is granted. 

We assume that each process is executing at a nonzero speed. However, we 

can make no assumption concerning the relative speed of the n processes. 

At a given point in time, many kernel-mode processes may be active in the 

operating system. As a result, the code implementing an operating system 

(kernel code) is subject to several possible race conditions. Consider as an 

example a kernel data structure that maintains a list of all open files in the 

system. This list must be modified when a new file is opened or closed 

(adding the file to the list or removing it from the list). If two processes 

were to open files simultaneously, the separate updates to this list could 

result in a race condition. Other kernel data structures that are prone to 

possible race conditions include structures for maintaining memory 

allocation, for maintaining process lists, and for interrupt handling. It is up 

to kernel developers to ensure that the operating system is free from such 

race conditions. 

Two general approaches are used to handle critical sections in operating 

systems: pre-emptive kernels and no preemptive kernels. A pre-emptive 

kernel allows a process to be pre-empted while it is running in kernel 

mode. A no preemptive kernel does not allow a process running in kernel 

mode to be pre-empted; a kernel-mode process will run until it exits kernel 

mode, blocks, or voluntarily yields control of the CPU. Obviously, a no 

preemptive kernel is essentially free from race conditions on kernel data 

structures, as only one process is active in the kernel at a time. We cannot 

say the same about pre-emptive kernels, so they must be carefully designed 

to ensure that shared kernel data are free from race conditions.  

Pre-emptive kernels are especially difficult to design for SMP 

architectures, since in these environments it is possible for two kernel-

mode processes to run simultaneously on different processors. A pre-

emptive kernel may be more responsive, since there is less risk that a 

kernel-mode process will run for an arbitrarily long period before 
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relinquishing the processor to waiting processes. (Of course, this risk can 

also be minimized by designing kernel code that does not behave in this 

way.) Furthermore, a pre-emptive kernel is more suitable for real-time 

programming, as it will allow a real-time process to pre-empt a process 

currently running in the kernel. Later in this chapter, we explore how 

various operating systems manage pre-emption within the kernel. 

6.3 SYNCHRONIZATION HARDWARE 

We have just described one software-based solution to the critical-section 

problem. However, as mentioned, software-based solutions such as 

Peterson’s are not guaranteed to work on modern computer architectures. 

In the following discussions, we explore several more solutions to the 

critical-section problem using techniques ranging from hardware to 

software-based APIs available to both kernel developers and application 

programmers. All these solutions are based on the premise of locking —

that is, protecting critical regions through the use of locks. As we shall see, 

the designs of such locks can be quite sophisticated. 

We start by presenting some simple hardware instructions that are 

available on many systems and showing how they can be used effectively 

in solving the critical-section problem. Hardware features can make any 

programming task easier and improve system efficiency. The critical-

section problem could be solved simply in a single-processor environment 

if we could prevent interrupts from occurring while a shared variable was 

being modified. In this way, we could be sure that the current sequence of 

instructions would be allowed to execute in order without preemption. No 

other instructions would be run, so no unexpected modifications could be 

made to the shared variable. This is often the approach taken by non-

preemptive kernels. 

boolean test and set(boolean *target)  

{ 

boolean rv = *target; 

*target = true; 

return rv; 

} 

Figure 6.1 The definition of the test and set() instruction. 

Do 

 { 

while (test and set(&lock)) 

; /* do nothing */ 
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/* critical section */ 

lock = false; 

/* remainder section */ 

} while (true); 

Figure 6.2 Mutual-exclusion implementation with test and set(). 

Unfortunately, this solution is not as feasible in a multiprocessor 

environment. Disabling interrupts on a multiprocessor can be time 

consuming, since the message is passed to all the processors. This message 

passing delays entry into each critical section, and system efficiency 

decreases. Also consider the effect on a system’s clock if the clock is kept 

updated by interrupts. Many modern computer systems therefore provide 

special hardware instructions that allow us either to test and modify the 

content of a word or to swap the contents of two words atomically—that is, 

as one uninterruptible unit. We can use these special instructions to solve 

the critical-section problem in a relatively simple manner. Rather than 

discussing one specific instruction for one specific machine, we abstract 

the main concepts behind these types of instructions by describing the test 

and set() and compare and swap() instructions. 

 The important characteristic of this instruction is that it is executed 

atomically. Thus, if two test and set() instructions are executed 

simultaneously (each on a different CPU), they will be executed 

sequentially in some arbitrary order. If the machine supports the test and 

set() instruction, then we can implement mutual exclusion by declaring a 

Boolean variable lock, initialized to false.The compare and swap() 

instruction, in contrast to the test and set() instruction, operates on three 

operands. The operand value is set to new value only if the expression 

(*value == exected) is true. Regardless, compare and swap() always 

returns the original value of the variable value. Like the test and set() 

instruction, compare and swap() is int compare and swap(int *value, int 

expected, int new value) executed atomically. 

 { 

int temp = *value; 

if (*value == expected) 

*value = new value; 

return temp; 

} 

Figure 6.3 The definition of the compare and swap() instruction. 

Do 
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 { 

while (compare and swap(&lock, 0, 1) != 0) 

; /* do nothing */ 

/* critical section */ 

lock = 0; 

/* remainder section */ 

} while (true); 

Figure 6.3 Mutual-exclusion implementation with the compare and swap() 

instruction. 

Mutual exclusion can be provided as follows: a globalvariable (lock) is 

declared and is initialized to 0. The first process that invokes compare and 

swap() will set lock to 1. It will then enter its critical section, because the 

original value of lock was equal to the expected value of 0. Subsequent 

calls to compare and swap() will not succeed, because lock now is not 

equal to the expected value of 0. When a process exits its critical section, it 

sets lock back to 0, which allows another process to enter its critical 

section. The structure of process Pi is shown in Figure 5.6. Although these 

algorithms satisfy the mutual-exclusion requirement, they do not satisfy the 

bounded-waiting requirement. In Figure 5.7, we present another algorithm 

using the test and set() instruction that satisfies all the critical-section 

requirements. The common data structures are 

do { 

waiting[i] = true; 

key = true; 

while (waiting[i] && key) 

key = test and set(&lock); 

waiting[i] = false; 

/* critical section */ 

j = (i + 1) % n; 

while ((j != i) && !waiting[j]) 

j = (j + 1) % n; 

if (j == i) 

lock = false; 

else 
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waiting[j] = false; 

/* remainder section */ 

} while (true); 

Figure 6.4 Bounded-waiting mutual exclusion with test and set(). 

boolean waiting[n]; 

boolean lock; 

These data structures are initialized to false. To prove that the mutual 

exclusion requirement is met, we note that process Pi can enter its critical 

section only if either waiting[i] == false or key == false. The value of key 

can become false only if the test and set() is executed. The first process to 

execute the test and set() will find key == false; all others must wait. The 

variable waiting[i] can become false only if another process leaves its 

critical section; only one waiting[i] is set to false, maintaining the mutual-

exclusion requirement. 

To prove that the progress requirement is met, we note that the arguments 

presented for mutual exclusion also apply here, since a process exiting the 

critical section either sets lock to false or sets waiting[j] to false. Both 

allow a process that is waiting to enter its critical section to proceed. To 

prove that the bounded-waiting requirement ismet,we note that, when a 

process leaves its critical section, it scans the array waiting in the cyclic 

ordering (i + 1, i + 2, ..., n − 1, 0, ..., i − 1). It designates the first process in 

this ordering that is in the entry section (waiting[j] == true) as the next one 

to enter the critical section. Any process waiting to enter its critical section 

will thus do so within n − 1 turns. 

Details describing the implementation of the atomic test and set() and 

compare and swap() instructions are discussed more fully in books on 

computer architecture. 

6.4 SEMAPHORES 

Mutex locks, as we mentioned earlier, are generally considered the 

simplest of synchronization tools. In this section, we examine a more 

robust tool that can behave similarly to a mutex lock but can also provide 

more sophisticated ways for processes to synchronize their activities. 

A semaphore S is an integer variable that, apart from initialization, is 

accessed only through two standard atomic operations: wait() and signal(). 

The wait() operation was originally termed P (from the Dutch proberen, ―to 

test‖); signal() was originally called V (from verhogen, ―to increment‖). 

The definition of wait() is as follows: 

wait(S) { 

while (S <= 0) 
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; // busy wait 

S--; 

} 

The definition of signal() is as follows: 

signal(S) { 

S++; 

} 

All modifications to the integer value of the semaphore in the wait() and 

signal() operations must be executed indivisibly. That is, when one process 

modifies the semaphore value, no other process can simultaneously modify 

that same semaphore value. In addition, in the case of wait(S), the testing 

of the integer value of S (S ≤ 0), as well as its possible modification (S--), 

must be executed without interruption.  

6.4.1 Semaphore Usage 

Operating systems often distinguish between counting and binary 

semaphores. The value of a counting semaphore can range over an 

unrestricted domain. The value of a binary semaphore can range only 

between 0 and 1. Thus, binary semaphores behave similarly to mutex 

locks. In fact, on systems that do not provide mutex locks, binary 

semaphores can be used instead for providing mutual exclusion. Counting 

semaphores can be used to control access to a given resource consisting of 

a finite number of instances. The semaphore is initialized to the number of 

resources available. Each process that wishes to use a resource performs a 

wait() operation on the semaphore (thereby decrementing the count).  

When a process releases a resource, it performs a signal() operation 

(incrementing the count). When the count for the semaphore goes to 0, all 

resources are being used. After that, processes that wish to use a resource 

will block until the count becomes greater than 0. We can also use 

semaphores to solve various synchronization problems. For example, 

consider two concurrently running processes: P1 with a statement S1 and 

P2 with a statement S2. Suppose we require that S2 be executed only after 

S1 has completed. We can implement this scheme readily by letting P1 and 

P2 share a common semaphore synch, initialized to 0. In process P1, we 

insert the statements 

S1; 

signal(synch); 

In process P2, we insert the statements 

wait(synch); 

S2; 
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Because synch is initialized to 0, P2 will execute S2 only after P1 has 

invoked signal(synch),  which is after statement S1 has been executed. 

6.4.2 Semaphore Implementation 

Recall that the implementation of mutex locks discussed in Section 5.5 

suffers from busy waiting. The definitions of the wait() and signal() 

semaphore operations just described present the same problem. To 

overcome the need for busy waiting, we can modify the definition of the 

wait() and signal() operations as follows: When a process executes the 

wait() operation and finds that the semaphore value is not positive, it must 

wait. However, rather than engaging in busy waiting, the process can block 

itself. The block operation places a process into a waiting queue associated 

with the semaphore, and the state of the process is switched to the waiting 

state. Then control is transferred to the CPU scheduler, which selects 

another process to execute. A process that is blocked, waiting on a 

semaphore S, should be restarted when some other process executes a 

signal() operation. The process is restarted by a wakeup() operation, which 

changes the process fromthe waiting state to the ready state. The process is 

then placed in the ready queue. (The CPU may or may not be switched 

from the running process to the newly ready process, depending on the 

CPU-scheduling algorithm.) 

To implement semaphores under this definition, we define a semaphore as 

follows: 

typedef struct { 

int value; 

struct process *list; 

} semaphore; 

Each semaphore has an integer value and a list of processes list. When a 

process must wait on a semaphore, it is added to the list of processes. A 

signal() operation removes one process from the list of waiting processes 

and awakens that process. Now, the wait() semaphore operation can be 

defined as 

wait(semaphore *S) { 

S->value--; 

if (S->value < 0) { 

add this process to S->list; 

block(); 

} 

} 
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 The signal() semaphore operation can be defined as 

signal(semaphore *S) { 

S->value++; 

if (S->value <= 0) { 

remove a process P from S->list; 

wakeup(P); 

} 

} 

The block() operation suspends the process that invokes it. The wakeup(P) 

operation resumes the execution of a blocked process P. These two 

operations are provided by the operating system as basic system calls. Note 

that in this implementation, semaphore values may be negative, whereas 

semaphore values are never negative under the classical definition of 

semaphores with busy waiting. If a semaphore value is negative, its 

magnitude is the number of processes waiting on that semaphore. This fact 

results from switching the order of the decrement and the test in the 

implementation of the wait() operation. The list of waiting processes can 

be easily implemented by a link field in each process control block (PCB). 

Each semaphore contains an integer value and a pointer to a list of PCBs. 

One way to add and remove processes from the list so as to ensure 

bounded waiting is to use a FIFO queue, where the semaphore contains 

both head and tail pointers to the queue. In general, however, the list can 

use any queueing strategy. Correct usage of semaphores does not depend 

on a particular queueing strategy for the semaphore lists.  

It is critical that semaphore operations be executed atomically. We must 

guarantee that no two processes can execute wait() and signal() operations 

on the same semaphore at the same time. This is a critical-section problem; 

and in a single-processor environment, we can solve it by simply inhibiting 

interrupts during the time the wait() and signal() operations are executing. 

This scheme works in a single-processor environment because, once 

interrupts are inhibited, instructions from different processes cannot be 

interleaved. Only the currently running process executes until interrupts are 

enabled and the scheduler can regain control. In a multiprocessor 

environment, interrupts must be disabled on every processor. Otherwise, 

instructions from different processes (running on different processors) may 

be interleaved in some arbitrary way. Disabling interrupts on every 

processor can be a difficult task and furthermore can seriously diminish 

performance. 

 Therefore, SMP systems must provide alternative locking techniques— 

such as compare and swap() or spinlocks—to ensure that wait() and 

signal() are performed atomically. It is important to admit that we have not 

completely eliminated busy waiting with this definition of the wait() and 
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signal() operations. Rather, we have moved busy waiting from the entry 

section to the critical sections of application programs. Furthermore, we 

have limited busy waiting to the critical sections of the wait() and signal() 

operations, and these sections are short (if properly coded, they should be 

no more than about ten instructions). Thus, the critical section is almost 

never occupied, and busy waiting occurs rarely, and then for only a short 

time. An entirely different situation exists with application programs 

whose critical sections may be long (minutes or even hours) or may almost 

always be occupied. In such cases, busy waiting is extremely inefficient. 

6.5 CLASSIC PROBLEMS OF SYNCHRONIZATION 

In this section, we present a number of synchronization problems as 

examples of a large class of concurrency-control problems. These 

problems are used for testing nearly every newly proposed synchronization 

scheme. In our solutions to the problems, we use semaphores for 

synchronization, since that is the traditional way to present such solutions. 

However, actual implementations of these solutions could use mutex locks 

in place of binary semaphores. 

6.5.1 The Bounded-Buffer Problem 

In our problem, the producer and consumer processes share the following 

data structures: 

int n; 

semaphore mutex = 1; 

semaphore empty = n; 

semaphore full = 0 

We assume that the pool consists of n buffers, each capable of holding one 

item. The mutex semaphore provides mutual exclusion for accesses to the 

buffer pool and is initialized to the value 1. The empty and full semaphores 

count the number of empty and full buffers. The semaphore empty is 

initialized to the value n; the semaphore full is initialized to the value 0. 

The code for the producer process is shown in Figure 5.9, and the code for 

the consumer process is shown in Figure 5.10. Note the symmetry between 

the producer and the consumer. We can interpret this code as the producer 

producing full buffers for the consumer or as the consumer producing 

empty buffers for the producer. 

do { 

wait(full); 

wait(mutex); 

. . . 

/* remove an item from buffer to next consumed */ 
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. . . 

signal(mutex); 

signal(empty); 

. . . 

/* consume the item in next consumed */ 

. . . 

} while (true); 

Figure 6.5 The structure of the consumer process. 

6.5.2 The Readers–Writers Problem 

Suppose that a database is to be shared among several concurrent 

processes. Some of these processes may want only to read the database, 

whereas others may want to update (that is, to read and write) the database. 

We distinguish between these two types of processes by referring to the 

former as readers and to the latter as writers. Obviously, if two readers 

access the shared data simultaneously, no adverse effects will result. 

However, if a writer and some other process (either a reader or a writer) 

access the database simultaneously, chaos may ensue. To ensure that these 

difficulties do not arise, we require that the writers have exclusive access 

to the shared database while writing to the database. This synchronization 

problem is referred to as the readers–writers problem. Since it was 

originally stated, it has been used to test nearly every new synchronization 

primitive. The readers–writers problem has several variations, all involving 

priorities. The simplest one, referred to as the first readers–writers 

problem, requires that no reader be kept waiting unless a writer has already 

obtained permission to use the shared object. In other words, no reader 

should wait for other readers to finish simply because a writer is waiting. 

The second readers –writers problem requires that, once a writer is ready, 

that writer perform its write as soon as possible. In other words, if a writer 

is waiting to access the object, no new readers may start reading. 

A solution to either problem may result in starvation. In the first case, 

writers may starve; in the second case, readers may starve. For this reason, 

other variants of the problem have been proposed. Next, we present a 

solution to the first readers–writers problem. See the bibliographical notes 

at the end of the chapter for references describing starvation-free solutions 

to the second readers–writers problem. 

In the solution to the first readers–writers problem, the reader processes 

share the following data structures: 

semaphore rw mutex = 1; 

semaphore mutex = 1; 
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int read count = 0; 

The semaphores mutex and rw mutex are initialized to 1; read count is 

initialized to 0. The semaphore rw mutex is common to both reader and 

writer processes. 

do { 

wait(rw mutex); 

. . . 

/* writing is performed */ 

. . . 

signal(rw mutex); 

} while (true); 

Figure 6.6 The structure of a writer process. 

The mutex semaphore is used to ensure mutual exclusion when the 

variable read count is updated. The read count variable keeps track of how 

many processes are currently reading the object. The semaphore rw mutex 

functions as a mutual exclusion semaphore for the writers. It is also used 

by the first or last reader that enters or exits the critical section. It is not 

used by readers who enter or exit while other readers are in their critical 

sections. The readers–writers problem and its solutions have been 

generalized to provide reader–writer locks on some systems. Acquiring a 

reader–writer lock requires specifying the mode of the lock: either read or 

write access. When a  in read mode. A process wishing to modify the 

shared data must request the lock in write mode. Multiple processes are 

permitted to concurrently acquire a reader–writer lock in read mode, but 

only one process may acquire the lock for writing, as exclusive access is 

required for writers. Reader–writer locks are most useful in the following 

situations: 

do { 

wait(mutex); 

read count++; 

if (read count == 1) 

wait(rw mutex); 

signal(mutex); 

. . . 

/* reading is performed */ 
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. . . 

wait(mutex); 

read count--; 

if (read count == 0) 

signal(rw mutex); 

signal(mutex); 

} while (true); 

Figure 6.7 The structure of a reader process. 

 

Figure 6.8 The situation of the dining philosophers. 

• In applications where it is easy to identify which processes only read 

shared data and which processes only write shared data. 

• In applications that have more readers than writers. This is because 

reader– writer locks generally require more overhead to establish than 

semaphores or mutual-exclusion locks. The increased concurrency of 

allowing multiple readers compensates for the overhead involved in setting 

up the reader– writer lock. 

6.5.3 The Dining-Philosophers Problem 

Consider five philosophers who spend their lives thinking and eating. The 

philosophers share a circular table surrounded by five chairs, each 

belonging to one philosopher. When a philosopher thinks, she does not 

interact with her colleagues. From time to time, a philosopher gets hungry 

and tries to pick up the two chopsticks that are closest to her (the 

chopsticks that are between her and her left and right neighbors). A 

philosopher may pick up only one chopstick at a time. Obviously, she 
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cannot pick up a chopstick that is already in the hand of a neighbor. When 

a hungry philosopher has both her chopsticks at the same time, she eats 

without releasing the chopsticks. When she is finished eating, she puts 

down both chopsticks and starts thinking again. The dining-philosophers 

problem is considered a classic synchronization problem neither because of 

its practical importance nor because computer scientists dislike 

philosophers but because it is an example of a large class of concurrency-

control problems. It is a simple representation of the need to allocate 

several resources among several processes in a deadlock-free and 

starvation-free manner. One simple solution is to represent each chopstick 

with a semaphore. A philosopher tries to grab a chopstick by executing a 

wait() operation on that semaphore. She releases her chopsticks by 

executing the signal() operation on the appropriate semaphores. Thus, the 

shared data are where all the elements of chopstick are initialized to 1 

semaphore chopstick[5]; 

do { 

wait(chopstick[i]); 

wait(chopstick[(i+1) % 5]); 

. . . 

/* eat for awhile */ 

. . . 

signal(chopstick[i]); 

signal(chopstick[(i+1) % 5]);  

. . . 

/* think for awhile */ 

. . . 

} while (true); 

Figure 6.9 The structure of philosopher i. 

Although this solution guarantees that no two neighbors are eating 

simultaneously, it nevertheless must be rejected because it could create a 

deadlock. Suppose that all five philosophers become hungry at the same 

time and each grabs her left chopstick. All the elements of chopstick will 

now be equal to 0. When each philosopher tries to grab her right chopstick, 

she will be delayed forever. Several possible remedies to the deadlock 

problem are replaced by: 

• Allow at most four philosophers to be sitting simultaneously at the table. 
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• Allow a philosopher to pick up her chopsticks only if both chopsticks are 

available (to do this, she must pick them up in a critical section). 

• Use an asymmetric solution—that is, an odd-numbered philosopher picks 

up first her left chopstick and then her right chopstick, whereas an even 

numbered philosopher picks up her right chopstick and then her left 

chopstick. 

.6.6 Monitors 

Although semaphores provide a convenient and effective mechanism for 

process synchronization, using them incorrectly can result in timing errors 

that are difficult to detect, since these errors happen only if particular 

execution sequences take place and these sequences do not always occur. 

In that example, the timing problem happened only rarely, and even then 

the counter value appeared to be reasonable—off by only 1. Nevertheless, 

the solution is obviously not an acceptable one. It is for this reason that 

semaphores were introduced in the first place. 

Unfortunately, such timing errors can still occur when semaphores are 

used. To illustrate how, we review the semaphore solution to the critical-

section problem. All processes share a semaphore variable mutex, which is 

initialized to 1. Each process must execute wait(mutex) before entering the 

critical section and signal(mutex) afterward. If this sequence is not 

observed, two processes may be in their critical sections simultaneously. 

Next, we examine the various difficulties that may result. Note that these 

difficulties will arise even if a single process is not well behaved. This 

situation may be caused by an honest programming error or an 

uncooperative programmer. 

• Suppose that a process interchanges the order in which the wait() and 

signal() operations on the semaphore mutex are executed, resulting in the 

following execution: 

signal(mutex); 

... 

critical section 

... 

wait(mutex); 

In this situation, several processes maybe executing in their critical 

sections simultaneously, violating the mutual-exclusion requirement. This 

error may be discovered only if several processes are simultaneously active 

in their critical sections. Note that this situation may not always be 

reproducible. Suppose that a process replaces signal(mutex) with 

wait(mutex). That is, it executes 

wait(mutex); 
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... 

critical section 

... 

wait(mutex); 

In this case, a deadlock will occur. Suppose that a process omits the 

wait(mutex), or the signal(mutex), or both. In this case, either mutual 

exclusion is violated or a deadlock will occur. These examples illustrate 

that various types of errors can be generated easily when programmers use 

semaphores incorrectly to solve the critical-section problem. Similar 

problems may arise in the other synchronization models discussed in 

Section 5.7. To deal with such errors, researchers have developed high-

level language constructs. In this section, we describe one fundamental 

high-level synchronization construct—the monitor type. 

monitor monitor name 

{ 

/* shared variable declarations */ 

function P1 ( . . . ) { 

. . . 

} 

function P2 ( . . . ) { 

. . . 

} 

. 

. 

. 

function Pn ( . . . ) { 

. . . 

} 

initialization code ( . . . ) { 

. . . 

} 

} 
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Figure 6.10 Syntax of a monitor. 

6.6.1 Monitor Usage 

An abstract data type—or ADT—encapsulates data with a set of functions 

to operate on that data that are independent of any specific implementation 

of the ADT. A monitor type is an ADT that includes a set of programmer 

defined operations that are provided with mutual exclusion within the 

monitor. 

The monitor type also declares the variables whose values define the state 

of an instance of that type, along with the bodies of functions that operate  

on those variables. The syntax of a monitor type is shown in Figure 5.15. 

The representation of a monitor type cannot be used directly by the various 

processes. Thus, a function defined within a monitor can access only those 

variables declared locally within the monitor and its formal parameters. 

Similarly, the local variables of a monitor can be accessed by only the local 

functions. 

The monitor construct ensures that only one process at a time is active 

within the monitor. Consequently, the programmer does not need to code 

this synchronization constraint explicitly (Figure 5.16). However, the 

monitor construct, as defined so far, is not sufficiently powerful for 

modeling some synchronization schemes. For this purpose, we need to 

define additional synchronization mechanisms. These mechanisms are 

provided by the condition construct. A programmer who needs to write a 

tailor-made synchronization scheme can define one or more variables of 

type condition: 

condition x, y; 

entry queue 

shared data 

operations 

initialization 

code 

. . . 

Figure 6.11 Schematic view of a monitor. 

The only operations that can be invoked on a condition variable are wait() 

and signal(). The operation  

x.wait(); 

means that the process invoking this operation is suspended until another 

process invokes 

x.signal(); 
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The x.signal() operation resumes exactly one suspended process. If 

noprocess is suspended, then the signal() operation has no effect; that is, 

the state of x is the same as if the operation had never been executed 

(Figure 5.17). Contrast this operation with the signal() operation associated 

with semaphores, which always affects the state of the semaphore. 

Now suppose that, when the x.signal() operation is invoked by a process P, 

there exists a suspended process Q associated with condition x. Clearly, if 

the suspended process Q is allowed to resume its execution, the signaling 

process P must wait. Otherwise, both P and Q would be active 

simultaneously within the monitor. Note, however, that conceptually both 

processes can continue with their execution. Two possibilities exist: 

1. Signal and wait. P either waits until Q leaves the monitor or waits for 

another condition. 

2. Signal and continue. Q either waits until P leaves the monitor or waits 

for another condition operations queues associated with 

x, y conditions 

entry queue 

shared data 

x 

y 

initialization 

code 

• • • 

Figure 6.12 Monitor with condition variables. 

There are reasonable arguments in favor of adopting either option. On the 

one hand, since P was already executing in the monitor, the signal-and 

continue method seems more reasonable. On the other, if we allow thread 

P to continue, then by the time Q is resumed, the logical condition for 

which Q was waiting may no longer hold. A compromise between these 

two choices was adopted in the language Concurrent Pascal. When thread 

P executes the signal operation, it immediately leaves the monitor. Hence, 

Q is immediately resumed. Many programming languages have 

incorporated the idea of the monitor as described in this section, including 

Java and C# (pronounced ―C-sharp‖). Other languages—such as Erlang—

provide some type of concurrency support using a similar mechanism. 

6.6.2 Dining-Philosophers Solution Using Monitors 

Next, we illustrate monitor concepts by presenting a deadlock-free solution 

to the dining-philosophers problem. This solution imposes the restriction 

that a philosopher may pick up her chopsticks only if both of them are 



 

98 

 

Synchronization  

 

 

Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Self – Instructional Material 

 

available. To code this solution, we need to distinguish among three states 

in which we may find a philosopher. For this purpose, we introduce the 

following data structure: 

enum {THINKING, HUNGRY, EATING} state[5]; 

Philosopher i can set the variable state[i] = EATING only if her two 

neighbors are not eating: (state[(i+4) % 5] != EATING) and(state[(i+1) 

% 5] != EATING). 

228 Chapter 5 Process Synchronization 

monitor DiningPhilosophers 

{ 

enum {THINKING, HUNGRY, EATING} state[5]; 

condition self[5]; 

void pickup(int i) { 

state[i] = HUNGRY; 

test(i); 

if (state[i] != EATING) 

self[i].wait(); 

} 

void putdown(int i) { 

state[i] = THINKING; 

test((i + 4) % 5); 

test((i + 1) % 5); 

} 

void test(int i) { 

if ((state[(i + 4) % 5] != EATING) && 

(state[i] == HUNGRY) && 

(state[(i + 1) % 5] != EATING)) { 

state[i] = EATING; 

self[i].signal(); 

} 
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} 

initialization code() { 

for (int i = 0; i < 5; i++) 

state[i] = THINKING; 

} 

} 

Figure 6.13 A monitor solution to the dining-philosopher problem. 

We also need to declare condition self; this allows philosopher i to delay 

herself when she is hungry but is unable to obtain the chopsticks she needs. 

We are now in a position to describe our solution to the dining-

philosophers problem. The distribution of the chopsticks is controlled by 

the monitor Dining Philosophers, Each philosopher, before starting to eat, 

must invoke the operation pickup(). This act may result in the suspension 

of the philosopher process. After the successful completion of the 

operation, the philosopher may eat. Following this, the philosopher invokes 

the putdown() operation. Thus, philosopher i must invoke the operations 

pickup() and putdown() in the following sequence: 

DiningPhilosophers.pickup(i); 

... 

eat 

... 

DiningPhilosophers.putdown(i); 

It is easy to show that this solution ensures that no two neighbours are 

eating simultaneously and that no deadlocks will occur. We note, however, 

that it is possible for a philosopher to starve to death. We do not present a 

solution to this problem but rather leave it as an exercise for you. 

6.6.3 Implementing a Monitor Using Semaphores 

We now consider a possible implementation of the monitor mechanism 

using semaphores. For each monitor, a semaphore mutex (initialized to 1) 

is provided. A process must execute wait(mutex) before entering the 

monitor and must execute signal(mutex) after leaving the monitor. 

Since a signalling process must wait until the resumed process leaves or 

waits, an additional semaphore, next, is introduced, initialized to 0. The 

signalling processes can use next to suspend themselves. An integer 

variable next count is also provided to count the number of processes 

suspended on next. Thus, each external function F is replaced by 

wait(mutex); 
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... 

body of F 

... 

if (next count > 0) 

signal(next); 

else 

signal(mutex); 

Mutual exclusion within a monitor is ensured. We can now describe how 

condition variables are implemented as well. For each condition x, we 

introduce a semaphore x sem and an integer variable x count, both 

initialized to 0. The operation x.wait() can now be implemented as 

x count++; 

if (next count > 0) 

signal(next); 

else 

signal(mutex); 

wait(x sem); 

x count--; 

The operation x.signal() can be implemented as 

if (x count > 0) { 

next count++; 

signal(x sem); 

wait(next); 

next count--; 

} 

This implementation is applicable to the definitions of monitors given by 

both Hoare and Brinch-Hansen (see the bibliographical notes at the end of 

the chapter). In some cases, however, the generality of the implementation 

is unnecessary, and a significant improvement in efficiency is possible. We 

leave this problem to you in Exercise 5.30. 
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6.6.4 Resuming Processes within a Monitor 

We turn now to the subject of process-resumption order within a monitor. 

If several processes are suspended on condition x, and an x.signal() 

operation is executed by some process, then how do we determine which 

of the suspended processes should be resumed next? One simple solution is 

to use a first-come, first-served (FCFS) ordering, so that the process that 

has been waiting the longest is resumed first. In many circumstances, 

however, such a simple scheduling scheme is not adequate. For this 

purpose, the conditional-wait construct can be used. This construct has the 

form 

x.wait(c); 

where c is an integer expression that is evaluated when the wait() operation 

is executed. The value of c, which is called a priority number, is then 

stored with the name of the process that is suspended. When x.signal() is 

executed, the process with the smallest priority number is resumed next. 

Each process, when requesting an allocation of this resource, specifies the 

maximum time it plans to use the resource. The monitor allocates the 

resource to the process that has the shortest time-allocation request. A 

process that needs to access the resource in question must observe the 

following sequence: 

R.acquire(t); 

... 

access the resource; 

... 

R.release(); 

where R is an instance of type Resource Allocator. Unfortunately, the 

monitor concept cannot guarantee that the preceding access sequence will 

be observed. In particular, the following problems can occur. A process 

might access a resource without first gaining access permission to the 

resource. 

monitor Resource Allocator 

{ 

boolean busy; 

condition x; 

void acquire(int time) { 

if (busy) 

x.wait(time); 
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busy = true; 

} 

void release() { 

busy = false; 

x.signal(); 

} 

initialization code() { 

busy = false; 

} 

} 

Figure 6.14 A monitor to allocate a single resource. 

• A process might never release a resource once it has been granted access 

to the resource. 

• A process might attempt to release a resource that it never requested. 

• A process might request the same resource twice (without first releasing 

the resource). 

The same difficulties are encountered with the use of semaphores, and 

these difficulties are similar in nature to those that encouraged us to 

develop the monitor constructs in the first place. Previously, we had to 

worry about the correct use of semaphores. Now, we have to worry about 

the correct use of higher-level programmer-defined operations, with which 

the compiler can no longer assist us. 

One possible solution to the current problem is to include the resource 

access operations within the Resource Allocator monitor. However, using 

this solution will mean that scheduling is done according to the built-in 

monitor-scheduling algorithm rather than the one we have coded. To 

ensure that the processes observe the appropriate sequences, we must 

inspect all the programs that make use of the Resource Allocator monitor 

and its managed resource. We must check two conditions to establish the 

correctness of this system. First, user processes must always make their 

calls on the monitor in a correct sequence. Second, we must be sure that an 

uncooperative process does not simply ignore the mutual-exclusion 

gateway provided by the monitor and try to access the shared resource 

directly, without using the access protocols. Only if these two conditions 

can be ensured can we guarantee that no time-dependent errors will occur 

and that the scheduling algorithm will not be defeated. 
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Check your Progress 

1. What is semaphore? 

2. What is binary Semaphore? 

3. What is the disadvantage of critical section? 

4. What is critical section? 

5. What are the problems in Classic Problems of Synchronization? 

 

 

6.7. ANSWERS TO CHECK YOUR PROGRESS 

1. Semaphore is a protected variable or abstract data type that is used 

to lock the resource being used. The value of the semaphore 

indicates the status of a common resource. There are two types of 

semaphore: 

 Binary semaphores 

 Counting semaphores 

2. Binary semaphore takes only 0 and 1 as value and used to 

implement mutual exclusion and synchronize concurrent processes. 

3. Higher priority threads may be asked to wait for an indefinite 

amount of time. Implementation of critical section is not an easy 

task (from programming perspective), since it has to consider all 

the possible collateral risks. 

4. A critical section is a piece of code that accesses a shared resource 

(either in the form of data structure or a device) that must not be 

concurrently accessed by more than one thread of execution (which 

will otherwise lock it from doing other things). 

5. some of the classic problem depicting flaws of process 

synchronization in systems where cooperating processes are 

present. 

 Bounded Buffer (Producer-Consumer) Problem 

 Dining Philosophers Problem 

 The Readers Writers Problem 

 

6.8. SUMMARY 
 

 The allocation of process plays a pivotal role in the operating 

system and the time in which the execution is performed is also 

calculated. 

 If process Pi is executing in its critical section, then no other 

processes can be executing in their critical sections. 

 Pre-emptive kernels are especially difficult to design for SMP 

architectures, since in these environments it is possible for two 

kernel-mode processes to run simultaneously on different 

processors. 

https://www.answers.com/Q/What_is_the_disadvantage_of_critical_section_in_operating_system
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 Mutual exclusion can be provided as follows: a globalvariable 

(lock) is declared and is initialized to 0. 

 Mutex locks are generally considered the simplest of 

synchronization tools. 

  

6.9. KEYWORDS 
 

Semaphore: A semaphore S is an integer variable that, apart from 

initialization, is accessed only through two standard atomic operations: 

wait() and signal(). 

Progress. If no process is executing in its critical section and some 

processes wish to enter their critical sections, then only those processes 

that are not executing in their remainder sections can participate in 

deciding which will enter its critical section next, and this selection cannot 

be postponed indefinitely. 

Bounded waiting. There exists a bound, or limit, on the number of times 

that other processes are allowed to enter their critical sections after a 

process has made a request to enter its critical section and before that 

request is granted. 

6.10. SELF ASSESSMENT QUESTIONS AND 

EXERCISES 
 

Short Answer questions: 

1. What is Bounded Buffer Problem? 

2. What is Monitor? 

3. Explain about Monitor Usage? 

4. What is Dining-Philosophers Problem? 

5. Explain about Semaphore Implementation? 

 

Long Answer questions: 

1. Explain briefly about Semaphore? 

2. Explain about Classic Problems of Synchronization? 

 

6.11. FURTHER READINGS 
 

Silberschatz, A., Galvin, P.B. and Gagne, G., 2006. Operating system 

principles. John Wiley & Sons. 

Tanenbaum, A.S. and Woodhull, A.S., 1997. Operating systems: design 

and implementation (Vol. 68). Englewood Cliffs: Prentice Hall. 

Deitel, H.M., Deitel, P.J. and Choffnes, D.R., 2004. Operating systems. 

Delhi.: Pearson Education: Dorling Kindersley. 

Stallings, W., 2012. Operating systems: internals and design principles. 

Boston: Prentic Hall,.
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UNIT VII DEADLOCK 
 

Structure 

7.0 Introduction 

7.1 Objective 

7.2 Deadlock Characterization 

7.3 Methods Handing Deadlocks 

7.4 Answers to Check Your Progress Questions 

7.5 Summary 

7.6 Key Words 

7.7 Self Assessment Questions and Exercises 

7.8 Further Readings 

 

7.0 INTRODUCTION 

This unit helps the user to understand the various characterization of the 

cause for deadlock and the methods to handle the deadlock situations 

deadlock is a situation in which two computer programs sharing the same 

resource are effectively preventing each other from accessing the resource, 

resulting in both programs ceasing to function. 

The earliest computer operating systems ran only one program at a time. 

All of the resources of the system were available to this one program. 

Later, operating systems ran multiple programs at once, interleaving them. 

Programs were required to specify in advance what resources they needed 

so that they could avoid conflicts with other programs running at the same 

time. Eventually some operating systems offered dynamic allocation of 

resources. Programs could request further allocations of resources after 

they had begun running. This led to the problem of the deadlock. When the 

process is available but it still can be accessed due to some other 

requisition of that process. To handle this situation various deadlock 

methods helps to overcome this situation 

7.1 OBJECTIVE 

This unit helps the user to understand the 

 Characterization of deadlocks 

 Methods for handling deadlocks 

7.2 DEADLOCK CHARACTERIZATION 

In a deadlock, processes never finish executing, and system resources are 

tied up, preventing other jobs from starting. Before we discuss the various 

methods for dealing with the deadlock problem, we look more closely at 

features that characterize deadlocks. 

Necessary Conditions 
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A deadlock situation can arise if the following four conditions hold 

simultaneously in a system: 

1. Mutual exclusion. At least one resource must be held in a non-sharable 

mode; that is, only one process at a time can use the resource. If another 

process requests that resource, the requesting process must be delayed until 

the resource has been released. 

2. Hold and wait. A process must be holding at least one resource and 

waiting to acquire additional resources that are currently being held by 

other processes. 

3. No pre-emption. Resources cannot be pre-empted; that is, a resource 

can be released only voluntarily by the process holding it, after that process 

has completed its task. 

4. Circular waits. A set {P0, P1, ..., Pn} of waiting processes must exist 

such that P0 is waiting for a resource held by P1, P1 is waiting for a 

resource held by P2, ..., Pn−1 is waiting for a resource held by Pn, and Pn 

is waiting for a resource held by P0. 

We emphasize that all four conditions must hold for a deadlock to occur. 

The circular-wait condition implies the hold-and-wait condition, so the 

four conditions are not completely independent. We shall see in Section 

7.4, however, that it is useful to consider each condition separately. 

7.2.1 Resource-Allocation Graph 

Deadlocks can be described more precisely in terms of a directed graph 

called a system resource-allocation graph. This graph consists of a set of 

vertices V and a set of edges E. The set of vertices V is partitioned into two 

different types of nodes: P = {P1, P2, ..., Pn}, the set consisting of all the 

active processes in the system, and R = {R1, R2, ..., Rm}, the set 

consisting of all resource types in the system. 

A directed edge from process Pi to resource type Rj is denoted by Pi → Rj 

; it signifies that process Pi has requested an instance of resource type Rj 

and is currently waiting for that resource. A directed edge from resource 

type Rj to process Pi is denoted by Rj → Pi; it signifies that an instance of 

resource type Rj has been allocated to process Pi. A directed edge Pi → Rj 

is called a request edge; a directed edge Rj → Pi is called an assignment 

edge. 

Pictorially, we represent each process Pi as a circle and each resource type 

Rj as a rectangle. Since resource type Rj may have more than one instance, 

we represent each such instance as a dot within the rectangle. Note that a 

request edge points to only the rectangle Rj, whereas an assignment edge 

must also designate one of the dots in the rectangle. When process Pi 

requests an instance of resource type Rj, a request edge is inserted in the 

resource-allocation graph. When this request can be fulfilled, the request 

edge is instantaneously transformed to an assignment edge. When the 

process no longer needs access to the resource, it releases the resource. As 
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a result, the assignment edge is deleted. The resource-allocation graph 

shown in Figure 7.1 depicts the following situation. 

• The sets P, R, and E: 

 P = {P1, P2, P3} 

R = {R1, R2, R3, R4} 

E = {P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 → P1, R3 → P3} 

• Resource instances: 

One instance of resource type R1 

Two instances of resource type R2 

One instance of resource type R3 

Three instances of resource type R4 

• Process states: 

Process P1 is holding an instance of resource type R2 and is waiting for an 

instance of resource type R1. Process s P2 is holding an instance of R1 and 

an instance of R2 and is waiting for an instance of R3. Process P3 is 

holding an instance of R3. 

 

Figure 7.1 Resource Allocation graph 

Given the definition of a resource-allocation graph, it can be shown that, if 

the graph contains no cycles, then no process in the system is deadlocked. 

If the graph does contain a cycle, then a deadlock may exist. If each 

resource type has exactly one instance, then a cycle implies that a deadlock 

has occurred. If the cycle involves only a set of resource types, each of 

which has only a single instance, then a deadlock has occurred. Each 

process involved in the cycle is deadlocked. In this case, a cycle in the 

graph is both a necessary and a sufficient condition for the existence of 

deadlock. If each resource type has several instances, then a cycle does not 

necessarily imply that a deadlock has occurred. In this case, a cycle in the 

graph is a necessary but not a sufficient condition for the existence of 

deadlock. To illustrate this concept, we return to the resource-allocation 

graph depicted in Figure 7.1. Suppose that process P3 requests an instance 

of resource type R2. Since no resource instance is currently available, we 
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add a request edge P3→ R2 to the graph (Figure 7.2). At this point, two 

minimal cycles exist in the system: 

 

Figure 7.2 Resource Allocation with deadlock 

P1 → R1 → P2 → R3 → P3 → R2 → P1 

P2 → R3 → P3 → R2 → P2 

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the 

resource R3, which is held by process P3. Process P3 is waiting for either 

process P1 or process P2 to release resource R2. In addition, process P1 is 

waiting for process P2 to release resource R1.  

P1 → R1 → P3 → R2 → P1 

 

 

Figure 7.3 resources without deadlock 

However, there is no deadlock. Observe that process P4 may release its 

instance of resource type R2. That resource can then be allocated to P3, 

breaking the cycle.  
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7.3 METHODS HANDING DEADLOCKS 

Generally speaking, we can deal with the deadlock problem in one of three 

ways: 

• We can use a protocol to prevent or avoid deadlocks, ensuring that the 

system will never enter a deadlocked state. 

• We can allow the system to enter a deadlocked state, detect it, and 

recover. 

• We can ignore the problem altogether and pretend that deadlocks never 

occur in the system. 

The third solution is the one used by most operating systems, including 

Linux and Windows. It is then up to the application developer to write 

programs that handle deadlocks. Next, we elaborate briefly on each of the 

three methods for handling deadlocks. Before proceeding, we should 

mention that some researchers have argued that none of the basic 

approaches alone is appropriate for the entire spectrum of resource-

allocation problems in operating systems. The basic approaches can be 

combined, however, allowing us to select an optimal approach for each 

class of resources in a system.  

To ensure that deadlocks never occur, the system can use either a deadlock 

prevention or a deadlock-avoidance scheme. These methods prevent 

deadlocks by constraining how requests for resources can be made. With 

this additional knowledge, the operating system can decide for each 

request whether or not the process should wait. To decide whether the 

current request can be satisfied or must be delayed, the system must 

consider the resources currently available, the resources currently allocated 

to each process, and the future requests and releases of each process. 

If a system does not employ either a deadlock-prevention or a deadlock 

avoidance algorithm, then a deadlock situation may arise. In this 

environment, the system can provide an algorithm that examines the state 

of the system to determine whether a deadlock has occurred and an 

algorithm to recover from the deadlock (if a deadlock has indeed 

occurred).  

In the absence of algorithms to detect and recover from deadlocks, we may 

arrive at a situation in which the system is in a deadlocked state yet has no 

way of recognizing what has happened. In this case, the undetected 

deadlock will cause the system’s performance to deteriorate, because 

resources are being held by processes that cannot run and because more 

and more processes, as they make requests for resources, will enter a 

deadlocked state. Eventually, the system will stop functioning and will 

need to be restarted manually. Although this method may not seem to be a 

viable approach to the deadlock problem, it is nevertheless used in most 

operating systems, as mentioned earlier. Expense is one important 

consideration. Ignoring the possibility of deadlocks is cheaper than the 
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other approaches. Since in many systems, deadlocks occur infrequently 

(say, once per year), the extra expense of the other methods may not seem 

worthwhile.  

In addition, methods used to recover from other conditions may be put to 

use to recover from deadlock. In some circumstances, a system is in a 

frozen state but not in a deadlocked state. We see this situation, for 

example, with a real-time process running at the highest priority (or any 

process running on a non-preemptive scheduler) and never returning 

control to the operating system. The system must have manual recovery 

methods for such conditions and may simply use those techniques for 

deadlock recovery. 

Check your Progress 

1. What is deadlock? 

2. What are the methods for handling deadlock? 

3. What is Resource-Allocation Graph? 

4. How to avoid deadlock? 

 

 

7.4. ANSWERS TO CHECK YOUR PROGRESS 
 

1. Deadlock is a specific situation or condition where two processes 

are waiting for each other to complete so that they can start. But 

this situation causes hang for both of them. 

 

2. There are three ways to handle deadlock: 

 Deadlock prevention or avoidance: The idea is to not let 

the system into deadlock state. 

One can zoom into each category individually; 

Prevention is done by negating one of above-mentioned 

necessary conditions for deadlock. 

Avoidance is kind of futuristic in nature. By using 

strategy of ―Avoidance‖, we have to make an 

assumption. We need to ensure that all information about 

resources which process WILL need are known to us 

prior to execution of the process. We use Banker’s 

algorithm (Which is in-turn a gift from Dijkstra) in order 

to avoid deadlock. 

 Deadlock detection and recovery: Let deadlock occur, 

then do pre-emption to handle it once occurred. 

 Ignore the problem all together: If deadlock is very rare, 

then let it happen and reboot the system. This is the 

approach that both Windows and UNIX take. 

3. Deadlocks can be described more precisely in terms of a directed 

graph called a system resource-allocation graph. 

4. There must be a fixed number of resources to allocate. 
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7.5.  SUMMARY 
 In a deadlock, processes never finish executing, and system 

resources are tied up, preventing other jobs from starting.  

 Deadlocks can be described more precisely in terms of a directed 

graph called a system resource-allocation graph. 

 To ensure that deadlocks never occur, the system can use either a 

deadlock prevention or a deadlock-avoidance scheme.  

 In the absence of algorithms to detect and recover from deadlocks, 

we may arrive at a situation in which the system is in a deadlocked 

state yet has no way of recognizing what has happened. 

 

7.6. KEYWORDS 
 

Mutual Exclusion: At least one resource must be held in a non-sharable 

mode. If any other process requests this resource, then that process must 

wait for the resource to be released. 

Hold and Wait: A process must be simultaneously holding at least one 

resource and waiting for at least one resource that is currently being held 

by some other process. 

No pre-emption: Once a process is holding a resource (i.e. once its request 

has been granted), then that resource cannot be taken away from that 

process until the process voluntarily releases it. 

Circular Wait: A set of processes {P0, P1, P2, . . ., PN} must exist such 

that every P [ i ] is waiting for P[ ( i + 1 ) % ( N + 1 ) ]. 

 

7.7. SELF ASSESSMENT QUESTIONS AND EXERCISES 
 

Short Answer questions: 

1. What is Mutual Exclusion? 

2. What is No Pre-emption? 

3. What is the characterization of deadlocks? 

4. What is Resource Allocation with deadlock? 

5. What are Circular waits? 

 

 

Long Answer questions: 

1. Explain briefly about deadlock characterization? 

2. Explain about Methods Handing Deadlocks? 

 

7.8. FURTHER READINGS 
 

Silberschatz, A., Galvin, P.B. and Gagne, G., 2006. Operating system 

principles. John Wiley & Sons. 
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Tanenbaum, A.S. and Woodhull, A.S., 1997. Operating systems: design 

and implementation (Vol. 68). Englewood Cliffs: Prentice Hall. 

Deitel, H.M., Deitel, P.J. and Choffnes, D.R., 2004. Operating systems. 
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UNIT VIII 

DEADLOCK PREVENTION 
 

Structure 

8.0 Introduction 

8.1 Objective 

8.2 Deadlock Prevention 

8.3 Deadlock Avoidance 

8.4 Deadlock Detection 

8.5 Recovery from Deadlock 

8.6 Answers to Check Your Progress Questions 

8.7 Summary 

8.8 Key Words 

8.9 Self Assessment Questions and Exercises 

8.10 Further Readings 

 

8.0 INTRODUCTION 

Prevention of deadlock is an important strategy where the situation can be 

avoided and the deadlock can be detected and solved if we simulate 

deadlock with a table which is standing on its four legs then we can also 

simulate four legs with the four conditions which when occurs 

simultaneously, cause the deadlock. However, if we break one of the legs 

of the table then the table will fall definitely. The same happens with 

deadlock, if we can be able to violate one of the four necessary conditions 

and don't let them occur together then we can prevent the deadlock. 

Let's see how we can prevent each of the conditions. The deadlock 

situations can also be recovered with the necessary steps and make the 

process available. 

8.1 OBJECTIVE 

This unit helps to 

 Learn the prevention of deadlock 

 Understand deadlock avoidance 

 Implement recovery of deadlocks 

8.2 DEADLOCK PREVENTION 

For a deadlock to occur, each of the four necessary conditions must hold. 

By ensuring that at least one of these conditions cannot hold, we can 

prevent the occurrence of a deadlock. We elaborate on this approach by 

examining each of the four necessary conditions separately. 
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8.2.1 Mutual Exclusion 

The mutual exclusion condition must hold. That is, at least one resource 

must be non-sharable. Sharable resources, in contrast, do not require 

mutually exclusive access and thus cannot be involved in a deadlock. 

Read-only files are a good example of a sharable resource. If several 

processes attempt to open a read-only file at the same time, they can be 

granted simultaneous access to the file. A process never needs to wait for a 

sharable resource. In general, however, we cannot prevent deadlocks by 

denying the mutual-exclusion condition, because some resources are 

intrinsically non-sharable. For example, a mutex lock cannot be 

simultaneously shared by several processes. 

8.2.2 Hold and Wait 

To ensure that the hold-and-wait condition never occurs in the system, we 

must guarantee that, whenever a process requests a resource, it does not 

hold any other resources. One protocol that we can use requires each 

process to request and be allocated all its resources before it begins 

execution. We can implement this provision by requiring that system calls 

requesting resources for a process precede all other system calls. An 

alternative protocol allows a process to request resources only when it has 

none. A process may request some resources and use them. Before it can 

request any additional resources, it must release all the resources that it is 

currently allocated. 

To illustrate the difference between these two protocols, we consider a 

process that copies data from a DVD drive to a file on disk, sorts the file, 

and then prints the results to a printer. If all resources must be requested at 

the beginning of the process, then the process must initially request the 

DVD drive, disk file, and printer. It will hold the printer for its entire 

execution, even though it needs the printer only at the end. 

The second method allows the process to request initially only the DVD 

drive and disk file. It copies from the DVD drive to the disk and then 

releases both the DVD drive and the disk file. The process must then 

request the disk file and the printer. After copying the disk file to the 

printer, it releases these two resources and terminates. Both these protocols 

have two main disadvantages. First, resource utilization may be low, since 

resources may be allocated but unused for a long period. In the example 

given, for instance, we can release the DVD drive and disk file, and then 

request the disk file and printer, only if we can be sure that our data will 

remain on the disk file. Otherwise, we must request all resources at the 

beginning for both protocols. 

Second, starvation is possible. A process that needs several popular 

resources may have to wait indefinitely, because at least one of the 

resources that it needs is always allocated to some other process.  
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8.2.3 No Pre-emption 

The third necessary condition for deadlocks is that there is no pre-emption 

of resources that have already been allocated. To ensure that this condition 

does not hold, we can use the following protocol. If a process is holding 

some resources and requests another resource that cannot be immediately 

allocated to it (that is, the process must wait), then all resources the process 

is currently holding are pre-empted. In other words, these resources are 

implicitly released. The preempted resources are added to the list of 

resources for which the process is waiting. The process will be restarted 

only when it can regain its old resources, as well as the new ones that it is 

requesting. 

Alternatively, if a process requests some resources, we first check whether 

they are available. If they are, we allocate them. If they are not, we check 

whether they are allocated to some other process that is waiting for 

additional resources. If so, we pre-empt the desired resources from the 

waiting process and allocate them to the requesting process. If the 

resources are neither available nor held by a waiting process, the 

requesting process must wait. While it is waiting, some of its resources 

may be preempted, but only if another process requests them. A process 

can be restarted only when it is allocated the new resources it is requesting 

and recovers any resources that were preempted while it was waiting. 

This protocol is often applied to resources whose state can be easily saved 

and restored later, such as CPU registers and memory space. It cannot 

generally be applied to such resources as mutex locks and semaphores. 

8.2.4 Circular Wait 

The fourth and final condition for deadlocks is the circular-wait condition. 

One way to ensure that this condition never holds is to impose a total 

ordering of all resource types and to require that each process requests 

resources in an increasing order of enumeration. To illustrate, we let R = 

{R1, R2, ..., Rm} be the set of resource types. We assign to each resource 

type a unique integer number, which allows us to compare two resources 

and to determine whether one precedes another in our ordering. Formally, 

we define a one-to-one function F: R→N, where N is the set of natural 

numbers. For example, if the set of resource types R includes tape drives, 

disk drives, and printers, then the function F might be defined as follows: 

F(tape drive) = 1 

F(disk drive) = 5 

F(printer) = 12 

We can now consider the following protocol to prevent deadlocks: Each 

process can request resources only in an increasing order of enumeration. 

That is, a process can initially request any number of instances of a 

resource type —say, Ri. After that, the process can request instances of 

resource type Rj if and only if F(Rj ) > F(Ri ). For example, using the 
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function defined previously, a process that wants to use the tape drive and 

printer at the same time must first request the tape drive and then request 

the printer. Alternatively, we can require that a process requesting an 

instance of resource type Rj must have released any resources Ri such that 

F(Ri ) ≥ F(Rj ). Note also that if several instances of the same resource 

type are needed, a single request for all of them must be issued. 

If these two protocols are used, then the circular-wait condition cannot 

hold. We can demonstrate this fact by assuming that a circular wait exists 

(proof by contradiction). Let the set of processes involved in the circular 

wait be {P0, P1, ..., Pn}, where Pi is waiting for a resource Ri , which is 

held by process Pi+1. (Modulo arithmetic is used on the indexes, so that Pn 

is waiting for a resource Rn held by P0.) Then, since process Pi+1 is 

holding resource Ri while requesting resource Ri+1, we must have F(Ri ) < 

F(Ri+1) for all i. But this condition means that F(R0) < F(R1) < ... < F(Rn) 

< F(R0). By transitivity, F(R0) < F(R0), which is impossible. Therefore, 

there can be no circular wait.We can accomplish this scheme in an 

application program by developing an ordering among all synchronization 

objects in the system. All requests for synchronization objects must be 

made in increasing order. For example, if the lock ordering in the Pthread 

program shown in Figure 7.4 was then thread two could not request the 

locks out of order. 

F(first mutex) = 1 

F(second mutex) = 5 

Keep in mind that developing an ordering, or hierarchy, does not in itself 

prevent deadlock. It is up to application developers to write programs that 

follow the ordering. Also note that the function F should be defined 

according to the normal order of usage of the resources in a system.  

/* thread one runs in this function */ 

void *do work one(void *param) 

{ 

pthread mutex lock(&first mutex); 

pthread mutex lock(&second mutex); 

/** 

* Do some work 

*/ 

pthread mutex unlock(&second mutex); 

pthread mutex unlock(&first mutex); 

pthread exit(0); 
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} 

/* thread two runs in this function */ 

void *do work two(void *param) 

{ 

pthread mutex lock(&second mutex); 

pthread mutex lock(&first mutex); 

/** 

* Do some work 

*/ 

pthread mutex unlock(&first mutex); 

pthread mutex unlock(&second mutex); 

pthread exit(0); 

} 

Figure 8.1 Deadlock example. 

The tape drive is usually needed before the printer, it would be reasonable 

to define F(tape  drive)<F(printer). Although ensuring that resources are 

acquired in the proper order is the responsibility of application developers, 

certain software can be used to verify that locks are acquired in the proper 

order and to give appropriate warnings when locks are acquired out of 

order and deadlock is possible. One lock-order verifier, which works on 

BSD versions of UNIX such as FreeBSD, is known as witness.  

It is also important to note that imposing a lock ordering does not 

guarantee deadlock prevention if locks can be acquired dynamically. For 

example, assume we have a function that transfers funds between two 

accounts. To prevent a race condition, each account has an associated 

mutex lock that is obtained from a get lock() function void 

transaction(Account from, Account to, double amount) 

{ 

mutex lock1, lock2; 

lock1 = get lock(from); 

lock2 = get lock(to); 

acquire(lock1); 

acquire(lock2); 
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withdraw(from, amount); 

deposit(to, amount); 

release(lock2); 

release(lock1); 

} 

Figure 8.2 Deadlock example with lock ordering. 

Deadlock is possible if two threads simultaneously invoke the transaction() 

function, transposing different accounts. That is, one thread might invoke 

transaction(checking account, savings account, 25); and another might 

invoke transaction(savings account, checking account, 50); 

8.3 DEADLOCK AVOIDANCE 

Deadlock-prevention algorithms, prevent deadlocks by limiting how 

requests can be made. The limits ensure that at least one of the necessary 

conditions for deadlock cannot occur. Possible side effects of preventing 

deadlocks by this method, however, are low device utilization and reduced 

system throughput. An alternative method for avoiding deadlocks is to 

require additional information about how resources are to be requested. For 

example, in a system with one tape drive and one printer, the system might 

need to know that process P will request first the tape drive and then the 

printer before releasing both resources, whereas process Q will request first 

the printer and then the tape drive. With this knowledge of the complete 

sequence of requests and releases for each process, the system can decide 

for each request whether or not the process should wait in order to avoid a 

possible future deadlock. Each request requires that in making this decision 

the system consider the resources currently available, the resources 

currently allocated to each process, and the future requests and releases of 

each process. 

The various algorithms that use this approach differ in the amount and type 

of information required. The simplest and most useful model requires that 

each process declare the maximum number of resources of each type that it 

may need. Given this a priori information, it is possible to construct an 

algorithm that ensures that the system will never enter a deadlocked state. 

A deadlock-avoidance algorithm dynamically examines the resource-

allocation state to ensure that a circular-wait condition can never exist. The 

resource allocation state is defined by the number of available and 

allocated resources and the maximum demands of the processes. In the 

following sections, we explore two deadlock-avoidance algorithms. 

8.3.1 Safe State 

A state is safe if the system can allocate resources to each process (up to its 

maximum) in some order and still avoid a deadlock. More formally, a 

system is in a safe state only if there exists a safe sequence. A sequence of 
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processes <P1, P2, ..., Pn> is a safe sequence for the current allocation 

state if, for each Pi , the resource requests that Pi can still make can be 

satisfied by the currently available resources plus the resources held by all 

Pj, with j < i. In this situation, if the resources that Pi needs are not 

immediately available, then Pi can wait until all Pj have finished. When 

they have finished, Pi can obtain all of its needed resources, complete its 

designated task, return its allocated resources, and terminate. When Pi 

terminates, Pi+1 can obtain its needed resources, and so on. If no such 

sequence exists, then the system state is said to be unsafe. A safe state is 

not a deadlocked state. Conversely, a deadlocked state is an unsafe state. 

Not all unsafe states are deadlocks,  

An unsafe state may lead to a deadlock. As long as the state is safe, the 

operating system can avoid unsafe (and deadlocked) states. In an unsafe 

state, the operating system cannot prevent processes from requesting 

resources in such a way that a deadlock occurs. The behavior of the 

processes controls unsafe states. To illustrate, we consider a system with 

twelve magnetic tape drives and three processes: P0, P1, and P2. Process 

P0 requires ten tape drives, process P1 may need as many as four tape 

drives, and process P2 may need up to nine tape drives. Suppose that, at 

time t0, process P0 is holding five tape drives, process P1 is holding two 

tape drives, and process P2 is holding two tape drives. (Thus, there are 

three free tape drives.) 

Maximum Needs Current Needs 

P0 10 5 

P1 4 2 

P2 9 2 
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Figure 8.3 Safe, unsafe, and deadlocked state spaces. 

At time t0, the system is in a safe state. The sequence <P1, P0, P2> 

satisfies the safety condition. Process P1 can immediately be allocated all 

its tape drives and then return them (the system will then have five 

available tape drives); then process P0 can get all its tape drives and return 

them (the system will then have ten available tape drives); and finally 

process P2 can get all its tape drives and return them (the system will then 

have all twelve tape drives available). A system can go from a safe state to 

an unsafe state. Suppose that, at time t1, process P2 requests and is 

allocated one more tape drive. The system is no longer in a safe state. At 

this point, only process P1 can be allocated all its tape drives. When it 

returns them, the system will have only four available tape drives. Since 

process P0 is allocated five tape drives but has a maximum of ten, it may 

request five more tape drives. If it does so, it will have to wait, because 

they are unavailable. Similarly, process P2 may request six additional tape 

drives and have to wait, resulting in a deadlock. Our mistake was in 

granting the request from process P2 for one more tape drive. If we had 

made P2 wait until either of the other processes had finished and released 

its resources, then we could have avoided the deadlock. 

Given the concept of a safe state, we can define avoidance algorithms that 

ensure that the system will never deadlock. The idea is simply to ensure 

that the system will always remain in a safe state. Initially, the system is in 

a safe state. Whenever a process requests a resource that is currently 

available, the system must decide whether the resource can be allocated 

immediately or whether the process must wait. The request is granted only 

if the allocation leaves the system in a safe state. In this scheme, if a 
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process requests a resource that is currently available, it may still have to 

wait. Thus, resource utilization may be lower than it would otherwise be. 

8.3.2 Resource-Allocation-Graph Algorithm 

. In addition to the request and assignment edges already described, we 

introduce a new type of edge, called a claim edge. A claim edge Pi → Rj 

indicates that process Pi may request resource Rj at some time in the 

future. This edge resembles a request edge in direction but is represented in 

the graph by a dashed line. When process Pi requests resource Rj , the 

claim edge Pi → Rj is converted to a request edge. Similarly, when a 

resource Rj is released by Pi , the assignment edge Rj → Pi is reconverted 

to a claim edge Pi → Rj . Note that the resources must be claimed a priori 

in the system. That is, before process Pi starts executing, all its claim edges 

must already appear in the resource-allocation graph. We can relax this 

condition by allowing a claim edge Pi → Rj to be added to the graph only 

if all the edges associated with process Pi are claim edges. 

 

Figure 8.4 Resource-allocation graph for deadlock avoidance. 

Now suppose that process Pi requests resource Rj. The request can be 

granted only if converting the request edge Pi → Rj to an assignment edge 

Rj → Pi does not result in the formation of a cycle in the resource-

allocation graph. We check for safety by using a cycle-detection algorithm. 

An algorithm for detecting a cycle in this graph requires an order of n2 

operations, where n is the number of processes in the system. 

If no cycle exists, then the allocation of the resource will leave the system 

in a safe state. If a cycle is found, then the allocation will put the system in 

an unsafe state. In that case, process Pi will have to wait for its requests to 

be satisfied. Suppose that P2 requests R2. Although R2 is currently free, 

we cannot allocate it to P2, since this action will create a cycle in the graph 

A cycle, as mentioned, indicates that the system is in an unsafe state. If P1 

requests R2, and P2 requests R1, then a deadlock will occur.  
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8.3.3 Banker’s Algorithm 

The resource-allocation-graph algorithm is not applicable to a resource 

allocation system with multiple instances of each resource type. The 

deadlock avoidance algorithm that we describe next is applicable to such a 

system but is less efficient than the resource-allocation graph scheme. This 

algorithm is commonly known as the banker’s algorithm. The name was 

chosen because the algorithm could be used in a banking system to ensure 

that the bank never allocated its available cash in such a way that it could 

no longer satisfy the needs of all its customers. 

 

Figure 8.5 An unsafe state in a resource-allocation graph. 

When a new process enters the system, it must declare the maximum 

number of instances of each resource type that it may need. This number 

may not exceed the total number of resources in the system. When a user 

requests set of resources, the system must determine whether the allocation 

of these resources will leave the system in a safe state. If it will, the 

resources are allocated; otherwise, the process must wait until some other 

process releases enough resources. Several data structures must be 

maintained to implement the banker’s algorithm. These data structures 

encode the state of the resource-allocation system. We need the following 

data structures, where n is the number of processes in the system and m is 

the number of resource types: 

• Available. A vector of length m indicates the number of available 

resources of each type. If Available[j] equals k, then k instances of 

resource type Rj are available. 

• Max. An n × m matrix defines the maximum demand of each process. If 

Max[i][j] equals k, then process Pi may request at most k instances of 

resource type Rj. 

• Allocation. An n × m matrix defines the number of resources of each type 

currently allocated to each process. If Allocation[i][j] equals k, then 

process Pi is currently allocated k instances of resource type Rj. 
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• Need. An n × m matrix indicates the remaining resource need of each 

process. If Need[i][j] equals k, then process Pi may need k more instances 

of resource type Rj to complete its task. Note that Need[i][j] equals 

Max[i][j] − Allocation[i][j]. 

These data structures vary over time in both size and value. To simplify the 

presentation of the banker’s algorithm, we next establish some notation. 

Let X and Y be vectors of length n. We say that X ≤ Y if and only if X[i] ≤ 

Y[i] for all i = 1, 2, ..., n. For example, if X = (1,7,3,2) and Y = (0,3,2,1), 

then Y ≤ X. In addition, Y < X if Y ≤ X and Y = X. 

We can treat each row in the matrices Allocation and Need as vectors and 

refer to them as Allocation i and Need i . The vector Allocation i specifies 

the resources currently allocated to process Pi; the vector Need i specifies 

the additional resources that process Pi may still request to complete its 

task. 

8.3.4 Safety Algorithm 

We can now present the algorithm for finding out whether or not a system 

is in a safe state. This algorithm can be described as follows: 

1. Let Work and Finish be vectors of length m and n, respectively. 

Initialize Work = Available and Finish[i] = false for i = 0, 1, ..., n − 1. 

2. Find an index i such that both 

a. Finish[i] == false 

b. Need  i ≤Work 

If no such i exists, go to step 4. 

3. Work =Work + Allocation i 

Finish[i] = true 

Go to step 2. 

4. If Finish[i] == true for all i, then the system is in a safe state.  

This algorithm may require an order of m × n 2 operations to determine 

whether 

a state is safe. 

8.3.5 Resource-Request Algorithm 

Next, we describe the algorithm for determining whether requests can be 

safely granted. Let Request i be the request vector for process Pi . If 

Request i [ j] == k, then process Pi wants k instances of resource type Rj . 

When a request for resources is made by process Pi , the following actions 

are taken: 
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1. If Request i ≤Need i , go to step 2. Otherwise, raise an error condition, 

since the process has exceeded its maximum claim. 

2. If Request i ≤ Available, go to step 3. Otherwise, Pi must wait, since the 

resources are not available. 

3. Have the system pretend to have allocated the requested resources to 

process Pi by modifying the state as follows: 

Available = Available–Request i; 

Allocation i = Allocation i + Request i; 

Need i = Need i –Request i; 

If the resulting resource-allocation state is safe, the transaction is 

completed, and process Pi is allocated its resources. However, if the new 

state is unsafe, then Pi must wait for Request i, and the old resource-

allocation state is restored. 

8.3.6 An Illustrative Example 

To illustrate the use of the banker’s algorithm, consider a system with five 

processes P0 through P4 and three resource types A, B, and C. Resource 

type A has ten instances, resource type B has five instances, and resource 

type C has seven instances. Suppose that, at time T0, the following 

snapshot of the system has been taken: 

Allocation Max Available 

A B C A B C A B C 

P0 0 1 0 7 5 3 3 3 2 

P1 2 0 0 3 2 2 

P2 3 0 2 9 0 2 

P3 2 1 1 2 2 2 

P4 0 0 2 4 3 3 

The content of the matrix Need is defined to be Max − Allocation and is as 

follows: 

Need 

A B C 

P0 7 4 3 

P1 1 2 2 

P2 6 0 0 

P3 0 1 1 
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P4 4 3 1 

We claim that the system is currently in a safe state. Indeed, the sequence 

<P1, P3, P4, P2, P0> satisfies the safety criteria. Suppose now that process 

P1 requests one additional instance of resource type A and two instances of 

resource type C, so Request1 = (1,0,2). To decide whether this request can 

be immediately granted, we first check that Request1 ≤ Available—that is, 

that (1,0,2) ≤ (3,3,2), which is true. We then pretend that this request has 

been fulfilled, and we arrive at the following new state:  

Allocation Need Available 

A B C A B C A B C 

P0 0 1 0 7 4 3 2 3 0 

P1 3 0 2 0 2 0 

P2 3 0 2 6 0 0 

P3 2 1 1 0 1 1 

P4 0 0 2 4 3 1 

We must determine whether this new system state is safe. To do so, we 

execute our safety algorithm and find that the sequence <P1, P3, P4, P0, 

P2> satisfies the safety requirement. Hence, we can immediately grant the 

request of process P1. You should be able to see, however, that when the 

system is in this state, a request for (3,3,0) by P4 cannot be granted, since 

the resources are not available. Furthermore, a request for (0,2,0) by P0 

cannot be granted, even though the resources are available, since the 

resulting state is unsafe. 

8.4 DEADLOCK DETECTION 

If a system does not employ either a deadlock-prevention or a deadlock 

avoidance algorithm, then a deadlock situation may occur. In this 

environment, the system may provide: 

• An algorithm that examines the state of the system to determine whethera 

deadlock has occurred 

• An algorithm to recover from the deadlock 

In the following discussion, we elaborate on these two requirements as 

they pertain to systems with only a single instance of each resource type, as 

well as to systems with several instances of each resource type. At this 

point, however, we note that a detection-and-recovery scheme requires 

overhead that includes not only the run-time costs of maintaining the 

necessary information and executing the detection algorithm but also the 

potential losses inherent in recovering from a deadlock. 
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8.4.1 Single Instance of Each Resource Type 

If all resources have only a single instance, then we can define a deadlock 

detection algorithm that uses a variant of the resource-allocation graph, 

called a wait-for graph. We obtain this graph from the resource-allocation 

graph by removing the resource nodes and collapsing the appropriate 

edges. More precisely, an edge from Pi to Pj in a wait-for graph implies 

that process Pi is waiting for process Pj to release a resource that Pi needs. 

An edge Pi → Pj exists in a wait-for graph if and only if the corresponding 

resource allocation graph contains two edges Pi → Rq and Rq → Pj for 

some resource Rq. In Figure 7.9, we present a resource-allocation graph 

and the corresponding wait-for graph. 

As before, a deadlock exists in the system if and only if the wait-for graph 

contains a cycle. To detect deadlocks, the system needs to maintain the 

wait for graph and periodically invoke an algorithm that searches for a 

cycle in the graph. An algorithm to detect a cycle in a graph requires an 

order of n2 operations, where n is the number of vertices in the graph. 

8.4.2 Several Instances of a Resource Type 

The wait-for graph scheme is not applicable to a resource-allocation 

system with multiple instances of each resource type. Detection algorithm 

that is applicable to such a system. The algorithm employs several time-

varying data structures that are similar to those used in the banker’s 

algorithm (Section 7.5.3): 

• Available. A vector of length m indicates the number of available 

resources of each type. 

• Allocation. An n × m matrix defines the number of resources of each type 

currently allocated to each process. 

• Request. An n × m matrix indicates the current request of each process.  

If Request[i][j] equals k, then process Pi is requesting k more instances of 

resource type Rj. To simplify notation, we again treat the rows in the 

matrices Allocation and Request as vectors; we refer to them as Allocation 

i and Request i. The detection algorithm described here simply investigates 

every possible allocation sequence for the processes that remain to be 

completed.  

1. Let Work and Finish be vectors of length m and n, respectively. 

Initialize Work = Available. For i = 0, 1, ..., n–1, if Allocation i = 0, then 

Finish[i] = false. Otherwise, Finish[i] = true. 

2. Find an index i such that both 

a. Finish[i] == false 

b. Request i ≤Work 

If no such i exists, go to step 4. 
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3. Work =Work + Allocation i 

Finish[i] = true 

Go to step 2. 

4. If Finish[i] ==false for some i, 0≤i<n, then the system is in a deadlocked 

state.  

Moreover, if Finish[i] == false, then process Pi is deadlocked. This 

algorithm requires an order of m × n2 operations to detect whether the 

system is in a deadlocked state. You may wonder why we reclaim the 

resources of process Pi (in step 3) as soon as we determine that Request i ≤ 

Work (in step 2b). We know that Pi is currently not involved in a deadlock 

(since Request i ≤ Work). Thus, we take an optimistic attitude and assume 

that Pi will require no more resources to complete its task; it will thus soon 

return all currently allocated resources to the system. If our assumption is 

incorrect, a deadlock may occur later. That deadlock will be detected the 

next time the deadlock-detection algorithm is invoked. 

To illustrate this algorithm, we consider a system with five processes P0 

through P4 and three resource types A, B, and C. Resource type A has 

seven instances, resource type B has two instances, and resource type C 

has six instances. Suppose that, at time T0, we have the following 

resource-allocation state: 

Allocation Request Available 

A B C A B C A B C 

P0 0 1 0 0 0 0 0 0 0 

P1 2 0 0 2 0 2 

P2 3 0 3 0 0 0 

P3 2 1 1 1 0 0 

P4 0 0 2 0 0 2 

We claim that the system is not in a deadlocked state. Indeed, if we execute 

our algorithm, we will find that the sequence <P0, P2, P3, P1, P4> results 

in Finish[i] == true for all i. Suppose now that process P2 makes one 

additional request for an instance of type C. The Request matrix is 

modified as follows: 

Request 

A B C 

P0 0 0 0 

P1 2 0 2 
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P2 0 0 1 

P3 1 0 0 

P4 0 0 2 

We claim that the system is now deadlocked. Although we can reclaim the 

resources held by process P0, the number of available resources is not 

sufficient to fulfill the requests of the other processes. Thus, a deadlock 

exists, consisting of processes P1, P2, P3, and P4. 

8.4.3 Detection-Algorithm Usage 

When should we invoke the detection algorithm? The answer depends on 

two factors: 

1. How often is a deadlock likely to occur? 

2. How many processes will be affected by deadlock when it happens? 

If deadlocks occur frequently, then the detection algorithm should be 

invoked frequently. Resources allocated to deadlocked processes will be 

idle until the deadlock can be broken. In addition, the number of processes 

involved in the deadlock cycle may grow. Deadlocks occur only when 

some process makes a request that cannot be granted immediately. This 

request may be the final request that completes a chain of waiting 

processes. In the extreme, then, we can invoke the deadlock detection 

algorithm every time a request for allocation cannot be granted 

immediately. In this case, we can identify not only the deadlocked set of 

processes but also the specific process that ―caused‖ the deadlock. (In 

reality, each of the deadlocked processes is a link in the cycle in the 

resource graph, soall of them, jointly, caused the deadlock.) If there are 

many different resource types, one request may create many cycles in the 

resource graph, each cycle completed by the most recent request and 

―caused‖ by the one identifiable process. 

Of course, invoking the deadlock-detection algorithm for every resource 

request will incur considerable overhead in computation time. A less 

expensive alternative is simply to invoke the algorithm at defined 

intervals—for example, once per hour or whenever CPU utilization drops 

below 40 percent. (A deadlock eventually cripples system throughput and 

causes CPU utilization to drop.) If the detection algorithm is invoked at 

arbitrary points in time, the resource graph may contain many cycles. In 

this case, we generally cannot tell which of the many deadlocked processes 

―caused‖ the deadlock. 

8.5 RECOVERY FROM DEADLOCK 

When a detection algorithm determines that a deadlock exists, several 

alternatives are available. One possibility is to inform the operator that a 

deadlock has occurred and to let the operator deal with the deadlock 

manually. Another possibility is to let the system recover from the 
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deadlock automatically. There are two options for breaking a deadlock. 

One is simply to abort one or more processes to break the circular wait. 

The other is to pre-empt some resources from one or more of the 

deadlocked processes. 

8.5.1 Process Termination 

To eliminate deadlocks by aborting a process, we use one of two methods. 

In both methods, the system reclaims all resources allocated to the 

terminated processes. 

 • Abort all deadlocked processes. This method clearly will break the 

deadlock cycle, but at great expense. The deadlocked processes may have 

computed for a long time, and the results of these partial computations 

must be discarded and probably will have to be recomputed later. 

• Abort one process at a time until the deadlock cycle is eliminated. This 

method incurs considerable overhead, since after each process is aborted, a 

deadlock-detection algorithm must be invoked to determine whether any 

processes are still deadlocked. 

Aborting a process may not be easy. If the process was in the midst of 

updating a file, terminating it will leave that file in an incorrect state. 

Similarly, if the process was in the midst of printing data on a printer, the 

system must reset the printer to a correct state before printing the next job. 

If the partial termination method is used, then we must determine which 

deadlocked process (or processes) should be terminated. This 

determination is a policy decision, similar to CPU-scheduling decisions. 

The question is basically an economic one; we should abort those 

processes whose termination will incur the minimum cost. Unfortunately, 

the term minimum cost is not a precise one. 

8.5.2 Resource Preemption 

To eliminate deadlocks using resource preemption, we successively 

preempt some resources from processes and give these resources to other 

processes until the deadlock cycle is broken. If preemption is required to 

deal with deadlocks, then three issues need to be addressed: 

1. Selecting a victim. Which resources and which processes are to be 

preempted? As in process termination, we must determine the order of 

preemption to minimize cost. Cost factors may include such parameters as 

the number of resources a deadlocked process is holding and the amount of 

time the process has thus far consumed. 

2. Rollback. If we preempt a resource from a process, what should be done 

with that process? Clearly, it cannot continue with its normal execution; it 

is missing some needed resource. We must roll back the process to some 

safe state and restart it from that state. 

Since, in general, it is difficult to determine what a safe state is, the 

simplest solution is a total rollback: abort the process and then restart it. 
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Although it is more effective to roll back the process only as far as 

necessary to break the deadlock, this method requires the system to keep 

more information about the state of all running processes. 

3. Starvation. How do we ensure that starvation will not occur? That is, 

how can we guarantee that resources will not always be preempted from 

the same process? 

In a system where victim selection is based primarily on cost factors, it 

may happen that the same process is always picked as a victim. As a result, 

this process never completes its designated task, a starvation situation any 

practical system must address. Clearly, we must ensure that a process can 

be picked as a victim only a (small) finite number of times. The most 

common solution is to include the number of rollbacks in the cost factor. 

 

Check your Progress 

1. Describe Banker’s algorithm? 

2. What factors determine whether a detection-algorithm must be 

utilized in a deadlock avoidance system? 

3. What is Starvation? 

4. What is aging in operating system? 

5. What are the techniques in avoid deadlocks? 

 

 

8.6. ANSWERS TO CHECK YOUR PROGRESS 

 

1. Banker’s algorithm is one form of deadlock-avoidance in a system. 

It gets its name from a banking system wherein the bank never 

allocates available cash in such a way that it can no longer satisfy 

the needs of all of its customers. 

 

2. One is that it depends on how often a deadlock is likely to occur 

under the implementation of this algorithm. The other has to do 

with how many processes will be affected by deadlock when this 

algorithm is applied. 

 

3. Starvation is Resource management problem. In this problem, a 

waiting process does not get the resources it needs for a long time 

because the resources are being allocated to other processes. 

 

4. Aging is a technique used to avoid the starvation in resource 

scheduling system. 

 

5. There are some techniques used to avoid deadlocks. There are two 

states involved in it. 

 Safe state 

 Unsafe state 
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8.7.  SUMMARY 

 If a system does not employ either a deadlock-prevention or a 

deadlock avoidance algorithm, then a deadlock situation may occur.  

 

 There are two options for breaking a deadlock. One is simply to 

abort one or more processes to break the circular wait. The other is 

to pre-empt some resources from one or more of the deadlocked 

processes. 

 

 The resource-allocation-graph algorithm is not applicable to a 

resource allocation system with multiple instances of each resource 

type. 

  Deadlock-prevention algorithms, prevent deadlocks by limiting 

how requests can be made. 

 

 To ensure that the hold-and-wait condition never occurs in the 

system, we must guarantee that, whenever a process requests a 

resource, it does not hold any other resources. 

  

8.8. KEYWORDS 
 

Safe State: A state is safe if the system can allocate resources to each 

process (up to its maximum) in some order and still avoid a deadlock.  

 

Abort all deadlocked processes. This method clearly will break the 

deadlock cycle, but at great expense. The deadlocked processes may have 

computed for a long time, and the results of these partial computations 

must be discarded and probably will have to be recomputed later. 

 

Starvation. How do we ensure that starvation will not occur? That is, how 

can we guarantee that resources will not always be preempted from the 

same process? 

Selecting a victim. Which resources and which processes are to be 

preempted? As in process termination, we must determine the order of 

preemption to minimize cost. Cost factors may include such parameters as 

the number of resources a deadlocked process is holding and the amount of 

time the process has thus far consumed. 

Rollback. If we preempt a resource from a process, what should be done 

with that process? Clearly, it cannot continue with its normal execution; it 

is missing some needed resource. We must roll back the process to some 

safe state and restart it from that state. 
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8.9. SELF ASSESSMENT QUESTIONS AND EXERCISES 

Short Answer questions: 

1. What is safe state? 

2. What is unsafe state? 

3. What is Safely Algorithm? 

4. What is Resource Request Algorithm? 

5. What is Deadlock detection? 

 

Long Answer questions: 

1. Explain about Recovery from deadlock? 

2. Explain about Banker’s algorithm and its types? 

3. Explain About Deadlock Prevention and Avoidance 
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UNIT IX 

MEMORY MANAGEMENT 

STRATEGIES         

Structure 

9.0 Introduction 

9.1 Objective 

9.2 Swapping 

9.3 Swapping-Contiguous Memory Allocation- Paging- Segmentation 

9.4 Paging 

9.5 Segmentation 

9.6 Answers to Check Your Progress Questions 

9.7 Summary 

9.8 Key Words 

9.9 Self Assessment Questions and Exercises 

9.10 Further Readings 

9.0 INTRODUCTION 

Memory is where the data is stored and retrieved. The memory 

management is performed on how the data can be processed. Memory 

management is the functionality of an operating system which handles or 

manages primary memory and moves processes back and forth between 

main memory and disk during execution. Memory management keeps 

track of each and every memory location, regardless of either it is allocated 

to some process or it is free. It checks how much memory is to be allocated 

to processes. It decides which process will get memory at what time. It 

tracks whenever some memory gets freed or unallocated and 

correspondingly it updates the status. There are various techniques grouped 

with memory management such as paging and segmentation. This unit 

explains the paging algorithms used for the allocation of pages in the 

memory and also the segmentation types. 

9.1 OBJECTIVE 

This unit helps the user to understand the  

 Continuous memory allocation 

 Paging algorithms 

 Segmentation techniques 
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9.2 SWAPPING 

A process must be in memory to be executed. A process, however, can be 

swapped temporarily out of memory to a backing store and then brought 

back into memory for continued execution (Figure 8.5). Swapping makes it 

possible for the total physical address space of all processes to exceed the 

real physical memory of the system, thus increasing the degree of 

multiprogramming in a system. 

9.2.1 Standard Swapping 

Standard swapping involves moving processes between main memory and 

a backing store. The backing store is commonly a fast disk. It must be large 

enough to accommodate copies of all memory images for all users, and it 

must provide direct access to these memory images. 

 

Figure 9.1 Swapping of two processes using a disk as a backing store. 

The system maintains a ready queue consisting of all processes whose 

memory images are on the backing store or in memory and are ready to 

run. Whenever the CPU scheduler decides to execute a process, it calls the 

dispatcher. The dispatcher checks to see whether the next process in the 

queue is in memory. If it is not, and if there is no free memory region, the 

dispatcher swaps out a process currently in memory and swaps in the 

desired process. It then reloads registers and transfers control to the 

selected process. 

The context-switch time in such a swapping system is fairly high. To get 

an idea of the context-switch time, let’s assume that the user process is 100 

MB in size and the backing store is a standard hard disk with a transfer rate 

of 50 MB/second. The actual transfer of the 100-MB process to or from 

main memory takes 100 MB/50 MB per second = 2 seconds. The swap 
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time is 200 milliseconds. Since we must swap both out and in, the total 

swap time is about 4,000 milliseconds. (Here, we are ignoring other disk 

performance aspects, which we cover in Chapter 10.) 

Notice that the major part of the swap time is transfer time. The total 

transfer time is directly proportional to the amount of memory swapped. If 

we have a computer system with 4 GB of main memory and a resident 

operating system taking 1 GB, the maximum size of the user process is 

3GB. However, many user processes may be much smaller than this—say, 

100 MB. A 100-MB process could be swapped out in 2 seconds, compared 

with the 60 seconds required for swapping 3 GB. Clearly, it would be 

useful to know exactly how much memory a user process is using, not 

simply how much it might be using. Then we would need to swap only 

what is actually used, reducing swap time. For this method to be effective, 

the user must keep the system informed of any changes in memory 

requirements. Thus, a process with dynamic memory requirements will 

need to issue system calls (request memory() and release memory()) to 

inform the operating system of its changing memory needs. 

Swapping is constrained by other factors as well. If we want to swap a 

process, we must be sure that it is completely idle. Of particular concern is 

any pending I/O. A process may be waiting for an I/O operation when we 

want to swap that process to free up memory. However, if the I/O is 

asynchronously accessing the user memory for I/O buffers, then the 

process cannot be swapped. Assume that the I/O operation is queued 

because the device is busy. If we were to swap out process P1 and swap in 

process P2, the I/O operation might then attempt to use memory that now 

belongs to process P2. There are two main solutions to this problem: never 

swap a process with pending I/O, or execute I/O operations only into 

operating-system buffers. Transfers between operating-system buffers and 

process memory then occur only when the process is swapped in. Note that 

this double buffering itself adds overhead.  

9.2.2 Swapping on Mobile Systems 

Although most operating systems for PCs and servers support some 

modified version of swapping, mobile systems typically do not support 

swapping in any form. Mobile devices generally use flash memory rather 

than more spacious hard disks as their persistent storage. The resulting 

space constraint is one reason why mobile operating-system designers 

avoid swapping. Other reasons include the limited number of writes that 

flash memory can tolerate before it becomes unreliable and the poor 

throughput between main memory and flash memory in these devices. 

Instead of using swapping, when free memory falls below a certain 

threshold, Apple’s iOS asks applications to voluntarily relinquish allocated 

memory. Read-only data (such as code) are removed from the system and 

later reloaded from flash memory if necessary. Data that have been 

modified (such as the stack) are never removed. However, any applications 

that fail to free up sufficient memory may be terminated by the operating 

system. 
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Android does not support swapping and adopts a strategy similar to that 

used by iOS. It may terminate a process if insufficient free memory is 

available. However, before terminating a process, Android writes its 

application state to flash memory so that it can be quickly restarted. 

Because of these restrictions, developers for mobile systems must carefully 

allocate and release memory to ensure that their applications do not use too 

much memory or suffer from memory leaks. Note that both iOS and 

Android support paging, so they do have memory-management abilities 

9.3 CONTIGUOUS MEMORY ALLOCATION 

The main memory must accommodate both the operating system and the 

various user processes. We therefore need to allocate main memory in the 

most efficient way possible. This section explains one early method, 

contiguous memory allocation. 

The memory is usually divided into two partitions: one for the resident 

operating system and one for the user processes. We can place the 

operating system in either low memory or high memory. The major factor 

affecting this decision is the location of the interrupt vector. Since the 

interrupt vector is often in low memory, programmers usually place the 

operating system in low memory as well. Thus, in this text, we discuss 

only the situation in which the operating system resides in low memory. 

The development of the other situation is similar. 

We usually want several user processes to reside in memory at the same 

time. We therefore need to consider how to allocate available memory to 

the processes that are in the input queue waiting to be brought into 

memory. In contiguous memory allocation, each process is contained in a 

single section of memory that is contiguous to the section containing the 

next process. 

9.3.1 Memory Protection 

Before discussing memory allocation further, we must discuss the issue of 

memory protection. We can prevent a process from accessing memory it 

does not own by combining two ideas previously discussed. If we have a 

system with a relocation register (Section 8.1.3), together with a limit 

register (Section 8.1.1), we accomplish our goal. The relocation register 

contains the value of the smallest physical address; the limit register 

contains the range of logical addresses (for example, relocation = 100040 

and limit = 74600). Each logical address must fall within the range 

specified by the limit register. The MMU maps the logical address 

dynamically by adding the value in the relocation register. This mapped 

address is sent to memory (Figure 8.6). When the CPU scheduler selects a 

process for execution, the dispatcher loads the relocation and limit registers 

with the correct values as part of the context switch. Because every address 

generated by a CPU is checked against these registers, we can protect both 

the operating system and the other users’ programs and data from being 

modified by this running process. 
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The relocation-register scheme provides an effective way to allow the 

operating system’s size to change dynamically. This flexibility is desirable 

in many situations. For example, the operating system contains code and 

buffer space for device drivers. If a device driver (or other operating-

system service) is not commonly used, we do not want to keep the code 

and data in memory, as we might be able to use that space for other 

purposes. Such code is sometimes called transient operating-system code; 

it comes and goes as needed. Thus, sing this code changes the size of the 

operating system during program execution. 

9.3.2 Memory Allocation 

Now we are ready to turn to memory allocation. One of the simplest 

methods for allocating memory is to divide memory into several fixed-

sized partitions. Each partition may contain exactly one process. Thus, the 

degree of multiprogramming is bound by the number of partitions. In this 

multiple partition method, when a partition is free, a process is selected 

from the input queue and is loaded into the free partition. When the process 

terminates, the partition becomes available for another process. This 

method was originally used by the IBM OS/360 operating system (called 

MFT) but is no longer in use. 

 

Figure9.2 Hardware support for relocation and limit registers. 

The method described next is a generalization of the fixed-partition scheme 

(called MVT); it is used primarily in batch environments. Many of the 

ideas presented here are also applicable to a time-sharing environment in 

which pure segmentation is used for memory management (Section 8.4). In 

the variable-partition scheme, the operating system keeps a table indicating 

which parts of memory are available and which are occupied. Initially, all 

memory is available for user processes and is considered one large block of 

available memory, a hole. Eventually, as you will see, memory contains a 

set of holes of various sizes. 
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As processes enter the system, they are put into an input queue. The 

operating system takes into account the memory requirements of each 

process and the amount of available memory space in determining which 

processes are allocated memory. When a process is allocated space, it is 

loaded into memory, and it can then compete for CPU time. When a 

process terminates, it releases its memory, which the operating system may 

then fill with another process from the input queue. 

At any given time, then, we have a list of available block sizes and an input 

queue. The operating system can order the input queue according to a 

scheduling algorithm. Memory is allocated to processes until, finally, the 

memory requirements of the next process cannot be satisfied—that is, no 

available block of memory (or hole) is large enough to hold that process. 

The operating system can then wait until a large enough block is available, 

or it can skip down the input queue to see whether the smaller memory 

requirements of some other process can be met. 

In general, as mentioned, the memory blocks available comprise a set of 

holes of various sizes scattered throughout memory. When a process 

arrives and needs memory, the system searches the set for a hole that is 

large enough for this process. If the hole is too large, it is split into two 

parts. One part is allocated to the arriving process; the other is returned to 

the set of holes. When a process terminates, it releases its block of 

memory, which is then placed back in the set of holes. If the new hole is 

adjacent to other holes, these adjacent holes are merged to form one larger 

hole. At this point, the system may need to check whether there are 

processes waiting for memory and whether this newly freed and 

recombined memory could satisfy the demands of any of these waiting 

processes. This procedure is a particular instance of the general dynamic 

storage allocation problem, which concerns how to satisfy a request of size 

n from a list of free holes. There are many solutions to this problem. The 

first-fit, best-fit, and worst-fit strategies are the ones most commonly used 

to select a free hole from the set of available holes. 

• First fit. Allocate the first hole that is big enough. Searching can start 

either at the beginning of the set of holes or at the location where the 

previous first-fit search ended. We can stop searching as soon as we find a 

free hole that is large enough. 

• Best fit. Allocate the smallest hole that is big enough. We must search the 

entire list, unless the list is ordered by size. This strategy produces the 

smallest leftover hole. 

• Worst fit. Allocate the largest hole. Again, we must search the entire list, 

unless it is sorted by size. This strategy produces the largest leftover hole, 

which may be more useful than the smaller leftover hole from a best-fit 

approach. 

Simulations have shown that both first fit and best fit are better than worst 

fit in terms of decreasing time and storage utilization. Neither first fit nor 
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best fit is clearly better than the other in terms of storage utilization, but 

first fit is generally faster. 

 

Figure 9.3 example of paging 

9.3.3 Fragmentation 

Both the first-fit and best-fit strategies for memory allocation suffer from 

external fragmentation. As processes are loaded and removed from 

memory, the free memory space is broken into little pieces. External 

fragmentation exists when there is enough total memory space to satisfy a 

request but the available spaces are not contiguous: storage is fragmented 

into a large number of small holes. This fragmentation problem can be 

severe. In the worst case, we could have a block of free (or wasted) 

memory between every two processes. If all these small pieces of memory 

were in one big free block instead, we might be able to run several more 

processes. Whether we are using the first-fit or best-fit strategy can affect 

the amount of fragmentation. (First fit is better for some systems, whereas 

best fit is better for others.) Another factor is which end of a free block is 

allocated.  

Depending on the total amount of memory storage and the average process 

size, external fragmentation may be a minor or a major problem. Statistical 

analysis of first fit, for instance, reveals that, even with some optimization, 

given N allocated blocks, another 0.5 N blocks will be lost to 

fragmentation. That is, one-third of memory may be unusable! This 

property is known as the 50-percent rule. 

Memory fragmentation can be internal as well as external. Consider a 

multiple-partition allocation scheme with a hole of 18,464 bytes. Suppose 

that the next process requests 18,462 bytes. If we allocate exactly the 

requested block, we are left with a hole of 2 bytes. The overhead to keep 
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 track of this hole will be substantially larger than the whole itself. The 

general approach to avoiding this problem is to break the physical memory 

into fixed-sized blocks and allocate memory in units based on block size. 

With this approach, the memory allocated to a process may be slightly 

larger than the requested memory. The difference between these two 

numbers is internal fragmentation—unused memory that is internal to a 

partition. 

One solution to the problem of external fragmentation is compaction. The 

goal is to shuffle the memory contents so as to place all free memory 

together in one large block. Compaction is not always possible, however. If 

relocation is static and is done at assembly or load time, compaction cannot 

be done. It is possible only if relocation is dynamic and is done at 

execution time. If addresses are relocated dynamically, relocation requires 

only moving the program and data and then changing the base register to 

reflect the new base address. When compaction is possible, we must 

determine its cost. The simplest compaction algorithm is to move all 

processes toward one end of memory; all holes move in the other direction, 

producing one large hole of available memory. This scheme can be 

expensive. 

9.4 PAGING 

Segmentation permits the physical address space of a process to be 

noncontiguous. Paging is another memory-management scheme that offers 

this advantage. However, paging avoids external fragmentation and the 

need for compaction, whereas segmentation does not. It also solves the 

considerable problem of fitting memory chunks of varying sizes onto the 

backing store. Most memory-management schemes used before the 

introduction of paging suffered from this problem. The problem arises 

because, when code fragments or data residing in main memory need to be 

swapped out, space must be found on the backing store. The backing store 

has the same fragmentation problems discussed in connection with main 

memory, but access is much slower, so compaction is impossible. Because 

of its advantages over earlier methods, paging in its various forms is used 
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in most operating systems, from those for mainframes through those for 

smartphones. Paging is implemented through cooperation between the 

operating system and the computer hardware 

 

Figure 9.4 Segmentation 

 

Figure 9.5 Paging model of logical and physical memory. 

9.4.1 Basic Method 

The basic method for implementing paging involves breaking physical 

memory into fixed-sized blocks called frames and breaking logical 

memory into blocks of the same size called pages. When a process is to be 

executed, its pages are loaded into any available memory frames from their 

source (a file system or the backing store). The backing store is divided 

into fixed-sized blocks that are the same size as the memory frames or 

clusters of multiple frames. This rather simple idea has great functionality 

and wide ramifications. For example, the logical address space is now 

totally separate from the physical address space, so a process can have a 

logical 64-bit address space even though the system has less than 264 bytes 

of physical memory. 

Every address generated by the CPU is divided into two parts: a page 

number (p) and a page. The page number is used as an index into a page 

table. The page table contains the base address  
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Figure 9.6 Paging hardware. 

of each page in physical memory. This base address is combined with the 

page offset to define the physical memory address that is sent to the 

memory unit. The paging model of memory is shown in Figure 8.11. 

The page size (like the frame size) is defined by the hardware. The size of 

a page is a power of 2, varying between 512 bytes and 1 GB per page, 

depending on the computer architecture. The selection of a power of 2 as a 

page size makes the translation of a logical address into a page number and 

page offset particularly easy. If the size of the logical address space is 2m, 

and a page size is 2n bytes, then the high-order m− n bits of a logical 

address designate the page number, and the n low-order bits designate the 

page offset. Thus, the logical address is as follows where p is an index into 

the page table and d is the displacement within the page. 

As a concrete (although minuscule) example, consider the memory in 

Figure 8.12. Here, in the logical address, n= 2 and m = 4. Using a page size 

of 4 bytes and a physical memory of 32 bytes (8 pages), we show how the 

programmer’s view of memory can be mapped into physical memory. 

Logical address 0 is page 0, offset 0. Indexing into the page table,  

we find that page 0 is in frame 5. Thus, logical address 0 maps to physical 

address 20 [= (5 × 4) + 0]. Logical address 3 (page 0, offset 3) maps to 

physical address 23 [= (5 × 4) + 3]. Logical address 4 is page 1, offset 0; 

according to the page table, page 1 is mapped to frame 6. Thus, logical 

address 4 maps to physical address 24 [= (6 × 4) + 0]. Logical address 13 

maps to physical address 9. You may have noticed that paging itself is a 

form of dynamic relocation. Every logical address is bound by the paging 

hardware to some physical address. Using paging is similar to using a table 

of base (or relocation) registers, one for each frame of memory. When we 

use a paging scheme, we have no external fragmentation: any free frame 

can be allocated to a process that needs it. However, we may have some 

internal fragmentation. Notice that frames are allocated as units. If the 

memory requirements of a process do not happen to coincide with page 

boundaries, the last frame allocated may not be completely full. For 

example, if page size is 2,048 bytes, a process of 72,766 bytes will need 35 

pages plus 1,086 bytes. It will be allocated 36 frames, resulting in internal 

fragmentation of 2,048 − 1,086 = 962 bytes. In the worst case, a process 
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would need n pages plus 1 byte. It would be allocated n + 1 frames, 

resulting in internal fragmentation of almost an entire frame. If process size 

is independent of page size, we expect internal fragmentation to average 

one-half page per process. This consideration suggests that small page 

sizes are desirable. However, overhead is involved in each page-table 

entry, and this overhead is reduced as the size of the pages increases. Also, 

disk I/O is more efficient when the amount data being transferred is larger 

(Chapter 10). Generally, page sizes have grown over time as processes, 

data sets, and main memory have become larger. Today, pages typically 

are between 4 KB and 8 KB in size, and some systems support even larger 

page sizes. Some CPUs and kernels even support multiple page sizes. For 

instance, Solaris uses page sizes of 8 KB and 4 MB, depending on the data 

stored by the pages. Researchers are now developing support for variable 

on-the-fly page size. Frequently, on a 32-bit CPU, each page-table entry is 

4 bytes long, but that size can vary as well. A 32-bit entry can point to one 

of 232 physical page frames. 

 

Figure 9.7 Free Frames after allocation 

If frame size is 4 KB (212), then a system with 4-byte entries can address 

244 bytes (or 16 TB) of physical memory. We should note here that the 

size of physical memory in a paged memory system is different from the 

maximum logical size of a process. As we further explore paging, we 

introduce other information that must be kept in the page-table entries. 

That information reduces the number of bits available to address page 

frames. Thus, a system with 32-bit page-table entries may address less 

physical memory than the possible maximum. A 32-bit CPU uses 32-bit 

addresses, meaning that a given process space can only be 232 bytes (4 

TB). Therefore, paging lets us use physical memory that is larger than what 

can be addressed by the CPU’s address pointer length. When a process 

arrives in the system to be executed, its size, expressed in pages, is 

examined. Each page of the process needs one frame. Thus, if the process 

requires n pages, at least n frames must be available in memory.  
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An important aspect of paging is the clear separation between the 

programmer’s view of memory and the actual physical memory. The 

programmer views memory as one single space, containing only this one 

program. In fact, the user program is scattered throughout physical 

memory, which also holds other programs. The difference between the 

programmer’s view of memory and the actual physical memory is 

reconciled by the address-translation hardware. The logical addresses are 

translated into physical addresses. This mapping is hidden from the 

programmer and is controlled by the operating system. Notice that the user 

process by definition is unable to access memory it does not own. It has no 

way of addressing memory outside of its page table, and the table includes 

only those pages that the process owns. Since the operating system is 

managing physical memory, it must be aware of the allocation details of 

physical memory—which frames are allocated, which frames are available, 

how many total frames there are, and so on. This information is generally 

kept in a data structure called a frame table. The frame table has one entry 

for each physical page frame, indicating whether the latter is free or 

allocated and, if it is allocated, to which page of which process or 

processes.  

In addition, the operating system must be aware that user processes operate 

in user space, and all logical addresses must be mapped to produce 

physical addresses. If a user makes a system call (to do I/O, for example) 

and provides an address as a parameter (a buffer, for instance), that address 

must be mapped to produce the correct physical address. The operating 

system maintains a copy of the page table for each process, just as it 

maintains a copy of the instruction counter and register contents. This copy 

is used to translate logical addresses to physical addresses whenever the 

operating system must map a logical address to a physical address 

manually. It is also used by the CPU dispatcher to define the hardware 

page table when a process is to be allocated the CPU. Paging therefore 

increases the context-switch time. 

9.4.2 Hardware Support 

Each operating system has its own methods for storing page tables. Some 

allocate a page table for each process. A pointer to the page table is stored 

with the other register values (like the instruction counter) in the process 

control block. When the dispatcher is told to start a process, it must reload 

the user registers and define the correct hardware page-table values from 

the stored user page table. Other operating systems provide one or at most 

a few page tables, which decreases the overhead involved when processes 

are context-switched. 

The hardware implementation of the page table can be done in several 

ways. In the simplest case, the page table is implemented as a set of 

dedicated registers. These registers should be built with very high-speed 

logic to make the paging-address translation efficient. Every access to 

memory must go through the paging map, so efficiency is a major 

consideration. The CPU dispatcher reloads these registers, just as it reloads 

the other registers. Instructions to load or modify the page-table registers 
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are, of course, privileged, so that only the operating system can change the 

memory map. The DEC PDP-11 is an example of such an architecture. The 

address consists of 16 bits, and the page size is 8 KB. The page table thus 

consists of eight entries that are kept in fast registers. 

The use of registers for the page table is satisfactory if the page table is 

reasonably small (for example, 256 entries). Most contemporary 

computers, however, allow the page table to be very large (for example, 1 

million entries). For these machines, the use of fast registers to implement 

the page table is not feasible. Rather, the page table is kept in main 

memory, and a page-table base register (PTBR) points to the page table. 

Changing page tables requires changing only this one register, substantially 

reducing context-switch time. The problem with this approach is the time 

required to access a user memory location. If we want to access location i, 

we must first index into the page table, using the value in the PTBR offset 

by the page number for i. This task requires a memory access. It provides 

us with the frame number, which is combined with the page offset to 

produce the actual address. We can then access the desired place in 

memory. With this scheme, two memory accesses are needed to access a 

byte (one for the page-table entry, one for the byte). Thus, memory access 

is slowed by a factor of 2. This delay would be intolerable under most 

circumstances. We might as well resort to swapping! 

The standard solution to this problem is to use a special, small, fast lookup 

hardware cache called a translation look-aside buffer (TLB). The TLB is 

associative, high-speed memory. Each entry in the TLB consists of two 

parts: a key (or tag) and a value. When the associative memory is presented 

with an item, the item is compared with all keys simultaneously. If the item 

is found, the corresponding value field is returned. The search is fast; a 

TLB lookup in modern hardware is part of the instruction pipeline, 

essentially adding no performance penalty. To be able to execute the 

search within a pipeline step, however, the TLB must be kept small. It is 

typically between 32 and 1,024 entries in size. Some CPUs implement 

separate instruction and data address TLBs. That cans double the number 

of TLB entries available, because those lookups occur in different pipeline 

steps. We can see in this development an example of the evolution of CPU 

technology: systems have evolved from having no TLBs to having multiple 

levels of TLBs, just as they have multiple levels of caches. 
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Figure9.8 Paging hardware with TLB 

The TLB is used with page tables in the following way. The TLB contains 

only a few of the page-table entries. When a logical address is generated by 

the CPU, its page number is presented to the TLB. If the page number is 

found, its frame number is immediately available and is used to access 

memory. As just mentioned, these steps are executed as part of the 

instruction pipeline within the CPU, adding no performance penalty 

compared with a system that does not implement paging. If the page 

number is not in the TLB (known as a TLB miss), a memory reference to 

the page table must be made. Depending on the CPU, this may be done 

automatically in hardware or via an interrupt to the operating system. 

When the frame number is obtained, we can use it to access memory 

(Figure 8.14). In addition, we add the page number and frame number to 

the TLB, so that they will be found quickly on the next reference. If the 

TLB is already full of entries, an existing entry must be selected for 

replacement. Replacement policies range from least recently used (LRU) 

through round-robin to random. Some CPUs allow the operating system to 

participate in LRU entry replacement, while others handle the matter 

themselves. Furthermore, some TLBs allow m certain entries to be wired 

down, meaning that they cannot be removed from the TLB. Typically, 

TLB entries for key kernel code are wired down. 

Some TLBs store address-space identifiers (ASIDs) in each TLB entry. An 

ASID uniquely identifies each process and is used to provide address-space 

protection for that process. When the TLB attempts to resolve virtual page 

numbers, it ensures that the ASID for the currently running process 

matches the ASID associated with the virtual page. If the ASIDs do not 

match, the attempt is treated as a TLB miss. In addition to providing 

address-space protection, an ASID allows the TLB to contain entries for 

several different processes simultaneously. If the TLB does not support 
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separate ASIDs, then every time a new page table is selected (for instance, 

with each context switch), the TLB must be flushed(or erased) to ensure 

that the next executing process does not use the wrong translation 

information. Otherwise, the TLB could include old entries that contain 

valid virtual addresses but have incorrect or invalid physical addresses left 

over from the previous process. 

The percentage of times that the page number of interest is found in the 

TLB is called the hit ratio. An 80-percent hit ratio, for example, means that 

we find the desired page number in the TLB 80 percent of the time. If it 

takes 100 nanoseconds to access memory, then a mapped-memory access 

takes 100 nanoseconds when the page number is in the TLB. If we fail to 

find the page number in the TLB then we must first access memory for the 

page table and frame number (100 nanoseconds) and then access the 

desired byte in memory (100 nanoseconds), for a total of 200 nanoseconds. 

(We are assuming that a page-table lookup takes only one memory access, 

but it can take more, as we shall see.) To find the effective memory-access 

time, we weight the case by its probability: 

Effective access time = 0.80 × 100 + 0.20 × 200 = 120 nanoseconds 

In this example, we suffer a 20-percent slowdown in average memory-

access time (from 100 to 120 nanoseconds). For a 99-percent hit ratio, 

which is much more realistic, we have 

Effective access time = 0.99 × 100 + 0.01 × 200 = 101 nanoseconds 

This increased hit rate produces only a 1 percent slowdown in access time. 

As we noted earlier, CPUs today may provide multiple levels of TLBs. 

Calculating memory access times in modern CPUs is therefore much more 

complicated than shown in the example above. For instance, the Intel Core 

i7 CPU has a 128-entry L1 instruction TLB and a 64-entry L1 data TLB. In 

the case of a miss at L1, it takes the CPU six cycles to check for the entry 

in the L2 512-entry TLB. A miss in L2 means that the CPU must either 

walk through the page-table entries in memory to find the associated frame 

address, which can take hundreds of cycles, or interrupt to the operating 

system to have it do the work. 

A complete performance analysis of paging overhead in such a system 

would require miss-rate information about each TLB tier. We can see from 

the general information above, however, that hardware features can have a 

significant effect on memory performance and that operating-system 

improvements (such as paging) can result in and, in turn, be affected by 

hardware changes(such as TLBs).We will further explore the impact of the 

hit ratio on the TLB in TLBs are a hardware feature and therefore would 

seem to be of little concerto operating systems and their designers. But the 

designer needs to understand the function and features of TLBs, which 

vary by hardware platform. For optimal operation, an operating-system 

design for a given platform must implement paging according to the 

platform’s TLB design. Likewise, a change in the TLB design (for 
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example, between generations of Intel CPUs) may necessitate a change in 

the paging implementation of the operating systems that use it. 

9.4.3 Protection 

Memory protection in a paged environment is accomplished by protection 

bits associated with each frame. Normally, these bits are kept in the page 

table. One bit can define a page to be read–write or read-only. Every 

reference to memory goes through the page table to find the correct frame 

number. At the same time that the physical address is being computed, the 

protection bits can be checked to verify that no writes are being made to a 

read-only page. An attempt to write to a read-only page causes a hardware 

trap to the operating system (or memory-protection violation). We can 

easily expand this approach to provide a finer level of protection. We can 

create hardware to provide read-only, read–write, or execute-only 

protection; or, by providing separate protection bits for each kind of 

access, we can allow any combination of these accesses. Illegal attempts 

will be trapped to the operating system. One additional bit is generally 

attached to each entry in the page table: a valid–invalid bit. When this bit is 

set to valid, the associated page is in the process’s logical address space 

and is thus a legal (or valid) page.  

 

 

Figure 9.9 valid or invalid bit in page table 

When the bit is set to invalid, the page is not in the process’s logical 

address space. Illegal addresses are trapped by use of the valid–invalid bit. 

The operating system sets this bit for each page to allow or disallow access 

to the page. Suppose, for example, that in a system with a 14-bit address 

space (0 to 16383), we have a program that should use only addresses 0 to 

10468. Given a page size of 2 KB, we have the situation shown in Figure 

8.15. Addresses in pages 0, 1, 2, 3, 4, and 5 are mapped normally through 

the page table. Any attempt to generate an address in pages 6 or 7, 

however, will find that the valid–invalid bit is set to invalid, and the 
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computer will trap to the operating system (invalid page reference). Notice 

that this scheme has created a problem. Because the program extends only 

to address 10468, any reference beyond that address is illegal. However, 

references to page 5 are classified as valid, so accesses to addresses up to 

12287 are valid. Only the addresses from 12288 to 16383 are invalid. This 

problem is a result of the 2-KB page size and reflects the internal 

fragmentation of paging. 

Rarely does a process use all its address range. In fact, many processes use 

only a small fraction of the address space available to them. It would be 

wasteful in these cases to create a page table with entries for every page in 

the address range. Most of this table would be unused but would take up 

valuable memory space. Some systems provide hardware, in the form of a 

page-table length register (PTLR), to indicate the size of the page table. 

This value is checked against every logical address to verify that the 

address is in the valid range for the process. Failure of this test causes an 

error trap to the operating system. 

9.4.4 Shared Pages 

An advantage of paging is the possibility of sharing common code. This 

consideration is particularly important in a time-sharing environment. 

Consider a system that supports 40 users, each of whom executes a text 

editor. If the text editor consists of 150 KB of code and 50 KB of data 

space, we need 8,000 KB to support the 40 users. If the code is re-entrant 

code (or pure code), however, it can be shared, as shown in Figure 8.16. 

Here, we see three processes sharing a three-page editor—each page 50 

KB in size (the large page size is used to simplify the figure). Each process 

has its own data page. Re-entrant code is non-self-modifying code: it never 

changes during execution. Thus, two or more processes can execute the 

same code at the same time Each process has its own copy of registers and 

data storage to hold the data for the process’s execution. The data for two 

different processes will, of course, be different. Only one copy of the editor 

need be kept in physical memory. Each user’s page table maps onto the 

same physical copy of the editor, but data pages are mapped onto different 

frames. Thus, to support 40 users, we need only one copy of the editor 

(150 KB), plus 40 copies of the 50 KB of data space per user. The total 

space required is now 2,150 KB instead of 8,000 KB—a significant 

savings. 

Other heavily used programs can also be shared—compilers, window 

systems, run-time libraries, database systems, and so on. To be sharable, 

the code must be reentrant. The read-only nature of shared code should not 

be left to the correctness of the code; the operating system should enforce 

this property. 
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Figure 9.10 Sharing of code 

The sharing of memory among processes on a system is similar to the 

sharing of the address space of a task by threads, described in Chapter 4. 

Furthermore, recall that in Chapter 3we described shared memory as a 

method of interprocess communication. Some operating systems 

implement shared memory using shared pages. Organizing memory 

according to pages provides numerous benefits in addition to allowing 

several processes to share the same physical pages. We cover several other 

benefits in Chapter 

9.4.5 Hierarchical Paging 

Most modern computer systems support a large logical address space (232 

to 264). In such an environment, the page table itself becomes excessively 

large. For example, consider a system with a 32-bit logical address space. 

If the page size in such a system is 4 KB (212), then a page table may 

consist of up to 1 million entries (232/212). Assuming that each entry 

consists of 4 bytes, each process may need up to 4 MB of physical address 

space for the page table alone. Clearly, we would not want to allocate the 

page table contiguously in main memory. One simple solution to this 

problem is to divide the page table into smaller pieces. We can accomplish 

this division in several ways. One way is to use a two-level paging 

algorithm, in which the page table itself is also paged (Figure 8.17). For 

example, consider again the system with a 32-bit logical address space and 

a page size of 4 KB. A logical address is divided into a page number 

consisting of 20 bits and a page offset consisting of 12 bits. Because we 

page the page table, the page number is further divided into a 10-bit page 

number and a 10-bit page offset. Thus, a logical address is as follows: 
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Figure 9.11 Logical Addressing 

where p1 is an index into the outer page table and p2 is the displacement 

within the page of the inner page table. The address-translation method for 

this architecture is shown in Figure 8.18. Because address translation 

works from the outer page table inward, this scheme is also known as a 

forward-mapped page table. 

Consider the memory management of one of the classic systems, the VAX 

minicomputer from Digital Equipment Corporation (DEC). The VAX was 

the most popular minicomputer of its time and was sold from 1977 through 

2000. The VAX architecture supported a variation of two-level paging. 

The VAX is a 32- bit machine with a page size of 512 bytes. The logical 

address space of a process is divided into four equal sections, each of 

which consists of 230 bytes. Each section represents a different part of the 

logical address space of a process. The first 2 high-order bits of the logical 

address designate the appropriate section. 
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Figure 9.12 Address translation 

The next 21 bits represent the logical page number of that section, and the 

final 9 bits represent an offset in the desired page. By partitioning the page 

table in this manner, the operating system can leave partitions unused until 

a process needs them. Entire sections of virtual address space are 

frequently unused, and multilevel page tables have no entries for these 

spaces, greatly decreasing the amount of memory needed to store virtual 

memory data structures.  

An address on the VAX architecture is as follows: 

 

Figure 9.13 VAX architecture address 

where s designates the section number, p is an index into the page table, 

and d is the displacement within the page. Even when this scheme is used, 

the size of a one-level page table for a VAX process using one section is 

221 bits ∗ 4 bytes per entry = 8 MB. To further reduce main-memory use, 

the VAX pages the user-process page tables. 

For a system with a 64-bit logical address space, a two-level paging 

scheme is no longer appropriate. To illustrate this point, let’s suppose that 

the page size in such a system is 4 KB (212). In this case, the page table 

consists of up to 252 entries. If we use a two-level paging scheme, then the 

inner page tables can conveniently be one page long, or contain 210 4-byte 

entries. The addresses look like this 
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Figure 9.14 VAX architecture address inner page 

The outer page table consists of 242 entries, or 244 bytes. The obvious way 

to avoid such a large table is to divide the outer page table into smaller 

pieces. (This approach is also used on some 32-bit processors for added 

flexibility and efficiency.) We can divide the outer page table in various 

ways. For example, we can page the outer page table, giving us a three-

level paging scheme. Suppose that the outer page table is made up of 

standard-size pages (210 entries, or 212 bytes). In this case, a 64-bit 

address space is still daunting: 

 

Figure 9.15 VAX architecture address outer page 

The outer page table is still 234 bytes (16 GB) in size. The next step would 

be a four-level paging scheme, where the second-level outer page table 

itself is also paged, and so forth. The 64-bit UltraSPARC would require 

seven levels of paging—a prohibitive number of memory accesses— to 

translate each logical address. You can see from this example why, for 64-

bit architectures, hierarchical page tables are generally considered 

inappropriate 

9.4.6 Hashed Page Tables 

A common approach for handling address spaces larger than 32 bits is to 

use a hashed page table, with the hash value being the virtual page number. 

Each entry in the hash table contains a linked list of elements that hash to 

the same location (to handle collisions). Each element consists of three 

fields: 

(1) The virtual page number, 

(2) The value of the mapped page frame, and  

(3) A pointer to the next element in the linked list. 
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Figure 9.16 Hash Page Table 

The algorithm works as follows: The virtual page number in the virtual 

address is hashed into the hash table. The virtual page number is compared 

with field 1 in the first element in the linked list. If there is a match, the 

corresponding page frame (field 2) is used to form the desired physical 

address. If there is no match, subsequent entries in the linked list are 

searched for a matching virtual page number. This scheme is shown in 

Figure 8.19. A variation of this scheme that is useful for 64-bit address 

spaces has been proposed. This variation uses clustered page tables, which 

are similar to hashed page tables except that each entry in the hash table 

refers to several pages (such as 16) rather than a single page. Therefore, a 

single page-table entry can store the mappings for multiple physical-page 

frames. Clustered page tables are particularly useful for sparse address 

spaces, where memory references are non-contiguous and scattered 

throughout the address space 

9.4.7 Inverted Page Tables 

Usually, each process has an associated page table. The page table has one 

entry for each page that the process is using (or one slot for each virtual 

address, regardless of the latter’s validity). This table representation is a 

natural one, since processes reference pages through the pages’ virtual 

addresses. The operating system must then translate this reference into a 

physical memory address. Since the table is sorted by virtual address, the 

operating system is able to calculate where in the table the associated 

physical address entry is located and to use that value directly. One of the 

drawbacks of this method is that each page table may consist of millions of 

entries. These tables may consume large amounts of physical memory just 

to keep track of how other physical memory is being used.  

To solve this problem, we can use an inverted page table. An inverted page 

table has one entry for each real page (or frame) of memory. Each entry 

consists of the virtual address of the page stored in that real memory 
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location, with information about the process that owns the page. Thus, only 

one page table is in the system, and it has only one entry for each page of 

physical memory. Figure 8.20 shows the operation of an inverted page 

table. Compare it with Figure 8.10, which depicts a standard page table in 

operation. Inverted page tables often require that an address-space 

identifier (Section 8.5.2) be stored in each entry of the page table, since the 

table usually contains several different address spaces mapping physical 

memory. Storing the address-space identifier ensures that a logical page for 

a particular process is mapped to the corresponding physical page frame. 

Examples of systems using inverted page tables include the 64-bit 

UltraSPARC and PowerPC. 

To illustrate this method, we describe a simplified version of the inverted 

page table used in the IBM RT. IBM was the first major company to use 

inverted page tables, starting with the IBM System 38 and continuing 

through the RS/6000 and the current IBM Power CPUs. For the IBM RT, 

each virtual address in the system consists of a triple: 

<process-id, page-number, offset>. 

Each inverted page-table entry is a pair <process-id, page-number> where 

the process-id assumes the role of the address-space identifier. When a 

memory reference occurs, part of the virtual address, consisting of 

<process-id, page number>, is presented to the memory subsystem. The 

inverted page table is then searched for a match. If a match is found—say, 

at entry i—then the physical address <i, offset> is generated. If no match is 

found, then an illegal address access has been attempted. 

Although this scheme decreases the amount of memory needed to store 

each page table, it increases the amount of time needed to search the table 

when a page reference occurs. Because the inverted page table is sorted by 

physical address, but lookups occur on virtual addresses, the whole table 

might need to be searched before a match is found. This search would take 

far too long. 
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Figure 9.17 Inverted Page Table 

To alleviate this problem, we use a hash table, as described in Section 

8.6.2, to limit the search to one—or at most a few—page-table entries. Of 

course, each access to the hash table adds memory reference to the 

procedure, so one virtual memory reference requires at least two real 

memory reads—one for the hash-table entry and one for the page table. 

(Recall that the TLB is searched first, before the hash table is consulted, 

offering some performance improvement.) Systems that use inverted page 

tables have difficulty implementing shared memory. Shared memory is 

usually implemented as multiple virtual addresses (one for each process 

sharing the memory) that are mapped to one physical address. This 

standard method cannot be used with inverted page tables; because there is 

only one virtual page entry for every physical page, one physical page 

cannot have two (or more) shared virtual addresses. A simple technique for 

addressing this issue is to allow the page table to contain only one mapping 

of a virtual address to the shared physical address. This means that 

references to virtual addresses that are not mapped result in page faults. 

9.5 SEGMENTATION 

As we’ve already seen, the user’s view of memory is not the same as the 

actual physical memory. This is equally true of the programmer’s view of 

memory. Indeed, dealing with memory in terms of its physical properties is 

inconvenient to both the operating system and the programmer. What if the 

hardware could provide a memory mechanism that mapped the 

programmer’s view to the actual physical memory? The system would 

have more freedom to manage memory, while the programmer would have 

a more natural programming environment. Segmentation provides such a 

mechanism. 

9.5.1 Basic Method 

Do programmers think of memory as a linear array of bytes, some 

containing instructions and others containing data? Most programmers 

would say ―no.‖ Rather, they prefer to view memory as a collection of 

variable-sized segments, with no necessary ordering among the segments 

(Figure 8.7). 
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Figure 9.18 Programmers view 

When writing a program, a programmer thinks of it as a main program 

with a set of methods, procedures, or functions. It may also include various 

data structures: objects, arrays, stacks, variables, and so on. Each of these 

modules or data elements is referred to by name. The programmer talks 

about ―the stack,‖ ―the math library,‖ and ―the main program‖ without 

caring what addresses in memory these elements occupy. She is not 

concerned with whether the stack is stored before or after the Sqrt() 

function. Segments vary in length, and the length of each is intrinsically 

defined by its purpose in the program. Elements within a segment are 

identified by their offset from the beginning of the segment: the first 

statement of the program, the seventh stack frame entry in the stack, the 

fifth instruction of the Sqrt(), and so on. Segmentation is a memory-

management scheme that supports this programmer view of memory. A 

logical address space is a collection of segments. Each segment has a name 

and a length. The addresses specify both the segment name and the offset 

within the segment. The programmer therefore specifies each address by 

two quantities: a segment name and an offset. For simplicity of 

implementation, segments are numbered and are referred to by a segment 

number, rather than by a segment name. Thus, a logical address consists of 

a two tuple: 

<segment-number, offset>. 

Normally, when a program is compiled, the compiler automatically 

constructs segments reflecting the input program. A C compiler might 

create separate segments for the following: 

1. The code 

2. Global variables 

3. The heap, from which memory is allocated 

4. The stacks used by each thread 
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5. The standard C library 

Libraries that are linked in during compile time might be assigned separate 

segments. The loader would take all these segments and assign them 

segment numbers. 

9.5.2 Segmentation Hardware 

Although the programmer can now refer to objects in the program by a 

two-dimensional address, the actual physical memory is still, of course, a 

one dimensional sequence of bytes. Thus, we must define an 

implementation to map two-dimensional user-defined addresses into one-

dimensional physical addresses. This mapping is affected by a segment 

table. Each entry in the segment table has a segment base and a segment 

limit. The segment base contains the starting physical address where the 

segment resides in memory, and the segment limit specifies the length of 

the segment.  

The segment number is used as an index to the segment table. The offset d 

of the logical address must be between 0 and the segment limit. If it is not, 

we trap to the operating system (logical addressing attempt beyond end of 

segment). When an offset is legal, it is added to the segment base to 

produce the address in physical memory of the desired byte. The segment 

table is thus essentially an array of base–limit register pairs. 

 

Figure 9.19 Segmentation Hardware 

As an example, consider the situation shown in Figure 8.9. We have five 

segments numbered from 0 through 4. The segments are stored in physical 

memory as shown. The segment table has a separate entry for each 

segment, giving the beginning address of the segment in physical memory 

(or base) and the length of that segment (or limit). For example, segment 2 
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is 400 bytes long and begins at location 4300. Thus, a reference to byte 53 

of segment 2 is mapped onto location 4300 + 53 = 4353. A reference to 

segment 3, byte 852, is mapped to 3200 (the base of segment 3) + 852 = 

4052. A reference to byte 1222 of segment0 would result in a trap to the 

operating system, as this segment is only 1,000 bytes long. 

 

Check your Progress 

1. What is fragmentation? 

2. What is the basic function of paging? 

3. What is Swapping? 

4. What is the use of paging? 

5. What is the concept of demand paging? 

 

9.6. ANSWERS TO CHECK YOUR PROGRESS 
 

1. Fragmentation is memory wasted. It can be internal if we are 

dealing with systems that have fixed-sized allocation units, or 

external if we are dealing with systems that have variable-sized 

allocation units. 

2. Paging is a memory management scheme that permits the physical 

address space of a process to be non-contiguous. It avoids the 

considerable problem of having to fit varied sized memory chunks 

onto the backing store. 

3. A process must be in memory to be executed. A process, however, 

can be swapped temporarily out of memory to a backing store and 

then brought back into memory for continued execution. Swapping 

makes it possible for the total physical address space of all 

processes to exceed the real physical memory of the system, thus 

increasing the degree of multiprogramming in a system. 

4. Paging is used to solve the external fragmentation problem in 

operating system. This technique ensures that the data you need is 

available as quickly as possible. 

5. Demand paging specifies that if an area of memory is not currently 

being used, it is swapped to disk to make room for an application's 

need. 

 

 

9.7.  SUMMARY 
 Standard swapping involves moving processes between main 

memory and a backing store.  

 The main memory must accommodate both the operating system 

and the various user processes. 

 External fragmentation exists when there is enough total memory 

space to satisfy a request but the available spaces are not 

contiguous: storage is fragmented into a large number of small 

holes. 
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 The basic method for implementing paging involves breaking 

physical memory into fixed-sized blocks called frames and 

breaking logical memory into blocks of the same size called pages. 

 Memory protection in a paged environment is accomplished by 

protection bits associated with each frame. 

  An inverted page table has one entry for each real page (or frame) 

of memory. 

 

  

9.8. KEYWORDS 
 

 Shared Memory: Shared memory is usually implemented as multiple 

virtual addresses (one for each process sharing the memory) that are 

mapped to one physical address. 

 Segmentation: Segmentation is a memory-management scheme that 

supports this programmer view of memory.  

 Offset: The offset d of the logical address must be between 0 and the 

segment limit. If it is not, we trap to the operating system (logical 

addressing attempt beyond end of segment). 

 

9.9. SELF ASSESSMENT QUESTIONS AND EXERCISES 

 

Short Answer questions: 

1. What is Memory Allocation? 

2. What is Memory Protection? 

3. What are segmentation techniques? 

4. What is Paging algorithms? 

5. What is Hashed Page Tables? 

 

Long Answer questions: 

1. Explain briefly about segmentation and its techniques? 

2. Explain briefly about Paging and its types? 
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10.0 INTRODUCTION 

Files are the important storage structures in which data can be easily stores 

and access. A file is a named collection of related information that is 

recorded on secondary storage such as magnetic disks, magnetic tapes and 

optical disks. In general, a file is a sequence of bits, bytes, lines or records 

whose meaning is defined by the files creator and user. The File is stored 

inside a directory or it can be called as the path of the file. There are many 

methods to access the files and various ways to represent the directories. 

This unit explores the files and directories access. 

10.1 OBJECTIVES 

This unit helps the user to 

 Understand the file access methods 

 Learn directories types 

10.2 FILE CONCEPT 

Computers can store information on various storage media, such as 

magnetic disks, magnetic tapes, and optical disks. So that the computer 

system will be convenient to use, the operating system provides a uniform 

logical view of stored information. The operating system abstracts from the 

physical properties of its storage devices to define a logical storage unit, 

the file. Files are mapped by the operating system onto physical devices. 

These storage devices are usually nonvolatile, so the contents are persistent 

between system reboots 

A file is a named collection of related information that is recorded on 

secondary storage. From a user’s perspective, a file is the smallest 

allotment of logical secondary storage; that is, data cannot be written to 
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secondary storage unless they are within a file. Commonly, files represent 

programs (both source and object forms) and data. Data files may be 

numeric, alphabetic, alphanumeric, or binary. Files may be free form, such 

as text files, or may be formatted rigidly. In general, a file is a sequence of 

bits, bytes, lines, or records, the meaning of which is defined by the file’s 

creator and user. The concept of a file is thus extremely general. 

The information in a file is defined by its creator. Many different types of 

information may be stored in a file—source or executable programs, 

numeric or text data, photos, music, video, and so on. A file has a certain 

defined structure, which depends on its type. A text file is a sequence of 

characters organized into lines (and possibly pages). A source file is a 

sequence of functions, each of which is further organized as declarations 

followed by executable statements. An executable file is a series of code 

sections that the loader can bring into memory and execute 

10.2.1 File Attributes 

A file is named, for the convenience of its human users, and is referred to 

by its name. A name is usually a string of characters, such as example.c. 

Some systems differentiate between uppercase and lowercase characters in 

names, whereas other systems do not. When a file is named, it becomes 

independent of the process, the user, and even the system that created it. 

For instance, one user might create the file example.c, and another user 

might edit that file by specifying its name. The file’s owner might write the 

file to a USB disk, send it as an e-mail attachment, or copy it across a 

network, and it could still be called example.c on the destination system. 

A file’s attributes vary from one operating system to another but typically 

consist of these: 

• Name. The symbolic file name is the only information kept in human 

readable form. 

• Identifier. This unique tag, usually a number, identifies the file within 

the file system; it is the non-human-readable name for the file. 

• Type. This information is needed for systems that support different types 

of files. 

• Location. This information is a pointer to a device and to the location of 

the file on that device. 

• Size. The current size of the file (in bytes, words, or blocks) and possibly 

the maximum allowed sizes are included in this attribute.  

• Protection. Access-control information determines who can do reading, 

writing, executing, and so on. 

• Time, date, and user identification. This information may be kept for 

creation, last modification, and last use. These data can be useful for 

protection, security, and usage monitoring. 
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10.2.2 File Operations 

A file is an abstract data type. To define a file properly, we need to 

consider the operations that can be performed on files. The operating 

system can provide system calls to create, write, read, reposition, delete, 

and truncate files. Let’s examine what the operating system must do to 

perform each of these six basic file operations. It should then be easy to see 

how other similar operations, such as renaming a file, can be implemented. 

• Creating a file. Two steps are necessary to create a file. First, space in 

the file system must be found for the file. We discuss how to allocate space 

for the file in Chapter 12. Second, an entry for the new file must be made 

in the directory. 

• Writing a file. To write a file, we make a system call specifying both the 

name of the file and the information to be written to the file. Given the 

name of the file, the system searches the directory to find the file’s 

location. The system must keep a write pointer to the location in the file 

where the next write is to take place. The write pointer must be updated 

whenever a write occurs. 

• Reading a file. To read from a file, we use a system call that specifies the 

name of the file and where (in memory) the next block of the file should be 

put. Again, the directory is searched for the associated entry, and the 

system needs to keep a read pointer to the location in the file where the 

next read is to take place. Once the read has taken place, the read pointer is 

updated. Because a process is usually either reading from or writing to a 

file, the current operation location can be kept as a per-process current file- 

position pointer. Both the read and write operations use this same pointer, 

saving space and reducing system complexity. 

• Repositioning within a file. The directory is searched for the appropriate 

entry, and the current-file-position pointer is repositioned to a given value. 

Repositioning within a file need not involve any actual I/O. This file 

operation is also known as a file seeks. 

• Deleting a file. To delete a file, we search the directory for the named 

file. Having found the associated directory entry, we release all file space, 

so that it can be reused by other files, and erase the directory entry. 

• Truncating a file. The user may want to erase the contents of a file but 

keep its attributes. Rather than forcing the user to delete the file and then 

recreate it, this function allows all attributes to remain unchanged—except 

for file length—but lets the file be reset to length zero and its file space 

released. 

10.3 ACCESS METHODS 

Files store information. When it is used, this information must be accessed 

and read into computer memory. The information in the file can be 

accessed in several ways. Some systems provide only one access method 
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for files. While others support many access methods, and choosing the 

right one for a particular application is a major design problem. 

10.3.1 Sequential Access 

The simplest access method is sequential access. Information in the file is 

processed in order, one record after the other. This mode of access is by far 

the most common; for example, editors and compilers usually access files 

in this fashion. Reads and writes make up the bulk of the operations on a 

file. A read operation—read next()—reads the next portion of the file and 

automatically advances a file pointer, which tracks the I/O location. 

Similarly, the write operation—write next()—appends to the end of the file 

and advances to the end of the newly written material (the new end of file). 

Such a file can be reset to the beginning, and on some systems, a program 

may be able to skip forward or backward n records for some integer n—

perhaps only for n = 1. Sequential access, which is depicted in Figure 11.4, 

is based on a tape model of a file and works as well on sequential-access 

devices as it does on random-access ones. 

10.3.2 Direct Access 

Another method is direct access (or relative access). Here, a file is made up 

of fixed-length logical records that allow programs to read and write 

records rapidly in no particular order. The direct-access method is based on 

a disk model of a file, since disks allow random access to any file block. 

The file is viewed as a numbered sequence of blocks or records. Thus, we 

may read block 14, then read block 53, and then write block 7. There are 

no restrictions on the order of reading or writing for a direct-access file. 

Direct-access files are of great use for immediate access to large amounts 

of information. Databases are often of this type. When a query concerning 

a particular subject arrives, we compute which block contains the answer 

and then read that block directly to provide the desired information. 

As a simple example, on an airline-reservation system, we might store all 

the information about a particular flight (for example, flight 713) in the 

block identified by the flight number. Thus, the number of available seats 

for flight 713 is stored in block 713 of the reservation file. To store 

information about a larger set, such as people, we might compute a hash 

function on the people’s names or search a small in-memory index to 

determine a block to read and search. 

For the direct-access method, the file operations must be modified to 

include the block number as a parameter. Thus, we have read(n), where n 

is the block number, rather than read next(), and write(n) rather than write 

next(). An alternative approach is to retain read next() and write next(), as 

with sequential access, and to add an operation position 

file(n) where n is the block number. Then, to effect a read(n), we would 

position file(n) and then read next(). The block number provided by the 

user to the operating system is normally a relative block number. A relative 

block number is an index relative to the beginning of the file. Thus, the 
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first relative block of the file is 0, the next is 1, and so on, even though the 

absolute disk address may be 14703 for the first block and 3192 for the 

second. The use of relative block numbers allows the operating system to 

decide where the file should be placed (called the allocation problem, as 

we discuss in Chapter 12) and helps to prevent the user from accessing 

portions of the file system that may not be part of her file. Some systems 

start their relative block numbers at 0; others start at 1. 

How, then, does the system satisfy a request for record N in a file? 

Assuming we have a logical record length L, the request for record N is 

turned into an I/O request for L bytes starting at location L ∗ (N) within the 

file (assuming the first record is N = 0). Since logical records are of a fixed 

size, it is also easy to read, write, or delete a record. 

Not all operating systems support both sequential and direct access for 

files. Some systems allow only sequential file access; others allow only 

direct access. Some systems require that a file be defined as sequential or 

direct when it is created. Such a file can be accessed only in a manner 

consistent with its declaration. We can easily simulate sequential access on 

a direct-access file by simply keeping a variable cp that defines our current 

position, is extremely inefficient and clumsy. 

10.3.3 Other Access Methods 

Other access methods can be built on top of a direct-access method. These 

methods generally involve the construction of an index for the file. The 

index, like an index in the back of a book, contains pointers to the various 

blocks. To find a record in the file, we first search the index and then use 

the pointer to access the file directly and to find the desired record. For 

example, a retail-price file might list the universal product codes (UPCs) 

for items, with the associated prices. Each record consists of a 10-digit 

UPC and a 6-digit price, for a 16-byte record. If our disk has 1,024 bytes 

per block, we can store 64 records per block. A file of 120,000 records 

would occupy about 2,000 blocks (2 million bytes). By keeping the file 

sorted by UPC, we can define an index consisting of the first UPC in each 

block. This index would have 2,000 entries of 10 digits each, or 20,000 

bytes, and thus could be kept in memory. To find the price of a particular 

item, we can make a binary search of the index. 

From this search, we learn exactly which block contains the desired record 

and access that block. This structure allows us to search a large file doing 

little I/O. With large files, the index file itself may become too large to be 

kept in memory. One solution is to create an index for the index file. The 

primary index file contains pointers to secondary index files, which point 

to the actual data items. 

For example, IBM’s indexed sequential-access method (ISAM) uses a 

small master index that points to disk blocks of a secondary index. The 

secondary index blocks point to the actual file blocks. The file is kept 

sorted on a defined key. To find a particular item, we first make a binary 

search of the master index, which provides the block number of the 
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secondary index. This block is read in, and again a binary search is used to 

find the block containing the desired record. Finally, this block is searched 

sequentially. In this way, any record can be located from its key by at most 

two direct-access reads. Figure 11.6 shows a similar situation as 

implemented by VMS index and relative files. 

 

 

Figure10.1 Simulation of Sequential Access 

10.4 DIRECTORY OVERVIEW 

The directory can be viewed as a symbol table that translates file names 

into their directory entries. If we take such a view, we see that the directory 

itself can be organized in many ways. The organization must allow us to 

insert entries, to delete entries, to search for a named entry, and to list all 

the entries in the directory. In this section, we examine several schemes for 

defining the logical structure of the directory system. When considering a 

particular directory structure, we need to keep in mind the operations that 

are to be performed on a directory: 

• Search for a file. We need to be able to search a directory structure to find 

the entry for a particular file. Since files have symbolic names, and similar 

names may indicate a relationship among files, we may want to be able to 

find all files whose names match a particular pattern. 

• Create a file. New files need to be created and added to the directory. 

• Delete a file. When a file is no longer needed, we want to be able to 

remove it from the directory. 

• List a directory. We need to be able to list the files in a directory and the 

contents of the directory entry for each file in the list. 

• Rename a file. Because the name of a file represents its contents to its 

users, we must be able to change the name when the contents or use of the 

file 

Changes. Renaming a file may also allow its position within the directory 

structure to be changed. 
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• Traverse the file system. We may wish to access every directory and 

every file within a directory structure. For reliability, it is a good idea to 

save the contents and structure of the entire file system at regular intervals. 

Often, we do this by copying all files to magnetic tape. This technique 

provides a backup copy in case of system failure. In addition, if a file is no 

longer in use, the file can be copied to tape and the disk space of that file 

released for reuse by another file. 

10.4.1 Single-Level Directory 

The simplest directory structure is the single-level directory. All files are 

contained in the same directory, which is easy to support and understand 

(Figure 11.9). A single-level directory has significant limitations, however, 

when the number of files increases or when the system has more than one 

user. Since all files are in the same directory, they must have unique 

names. If two users call their data file test.txt, then the unique-name rule is 

violated. For example, in one programming class, 23 students called the 

program for their second assignment prog2.c; another 11 called it 

assign2.c. Fortunately, most file systems support file names of up to 255 

characters, so it is relatively easy to select unique file names.  

 

Figure10.2 Single level directory 

Even a single user on a single-level directory may find it difficult to 

remember the names of all the files as the number of files increases. It is 

not uncommon for a user to have hundreds of files on one computer system 

and an equal number of additional files on another system. Keeping track 

of so many files is a daunting task.  

10.4.2 Two-Level Directory 

As we have seen, a single-level directory often leads to confusion of file 

names among different users. The standard solution is to create a separate 

directory for each user. In the two-level directory structure, each user has 

his own user file directory (UFD). The UFDs have similar structures, but 

each lists only the files of a single user. When a user job starts or a user 

logs in, the system’s master file directory (MFD) is searched. The MFD is 

indexed by user name or  account number, and each entry points to the 

UFD for that user (Figure 11.10). 

When a user refers to a particular file, only his own UFD is searched. 

Thus, different users may have files with the same name, as long as all the 

file names within each UFD are unique. To create a file for a user, the 



 

168 

 

File Concept      

Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self – Instructional Material 

 

operating system searches only that user’s UFD to ascertain whether 

another file of that name exists. To delete a file, the operating system 

confines its search to the local UFD; thus, it cannot accidentally delete 

another user’s file that has the same name. 

 

Figure 10.3 Two-level directory structure. 

10.4.3 Tree-Structured Directories 

Once we have seen how to view a two-level directory as a two-level tree, 

the natural generalization is to extend the directory structure to a tree of 

arbitrary height (Figure 11.11). This generalization allows users to create 

their own subdirectories and to organize their files accordingly. A tree is 

the most common directory structure. The tree has a root directory, and 

every file in the system has a unique path name. 

A directory (or subdirectory) contains a set of files or subdirectories. A 

directory is simply another file, but it is treated in a special way. All 

directories have the same internal format. One bit in each directory entry 

defines the entry as a file (0) or as a subdirectory (1). Special system calls 

are used to create and delete directories. In normal use, each process has a 

current directory. The current directory should contain most of the files 

that are of current interest to the process. When reference is made to a file, 

the current directory is searched. If a file is needed that is not in the current 

directory, then the user usually must either specify a path name or change 

the current directory to be the directory holding that file. To change 

directories, a system call is provided that takes a directory name as a 

parameter and uses it to redefine the current directory. Thus, the user can 

change her current directory whenever she wants. From one change 

directory() system call to the next, all open() system calls search the 

current directory for the specified file. Note that the search path may or 

may not contain a special entry that stands for ―the current directory. 
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Figure 10.4 Tree-structured directory structure 

10.4.4 Acyclic-Graph Directories 

Consider two programmers who are working on a joint project. The files 

associated with that project can be stored in a subdirectory, separating 

them from other projects and files of the two programmers. But since both 

programmers are equally responsible for the project, both want the 

subdirectory to be in their own directories. In this situation, the common 

subdirectory should be shared. 

A shared directory or file exists in the file system in two (or more) places 

at once. A tree structure prohibits the sharing of files or directories. An 

acyclic graph —that is, a graph with no cycles—allows directories to share 

subdirectories and files (Figure 11.12). The same file or subdirectory may 

be in two different directories. The acyclic graph is a natural generalization 

of the tree-structured directory scheme. 

It is important to note that a shared file (or directory) is not the same as two 

copies of the file. With two copies, each programmer can view the copy 

rather than the original, but if one programmer changes the file, the 

changes will not appear in the other’s copy. With a shared file, only one 

actual file exists, so any changes made by one person are immediately 

visible to the other. Sharing is particularly important for subdirectories; a 

new file created by one person will automatically appear in all the shared 

subdirectories. 
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Figure 10.5 Acyclic-graph directory structure. 

10.4.5General Graph Directory 

A serious problem with using an acyclic-graph structure is ensuring that 

there are no cycles. If we start with a two-level directory and allow users to 

create subdirectories, a tree-structured directory results. It should be fairly 

easy to see that simply adding new files and subdirectories to an existing 

tree-structured directory preserves the tree-structured nature. However, 

when we add links, the tree structure is destroyed, resulting in a simple 

graph structure (Figure 11.13). The primary advantage of an acyclic graph 

is the relative simplicity of the algorithms to traverse the graph and to 

determine when there are no more references to a file. We want to avoid 

traversing shared sections of an acyclic graph twice, mainly for 

performance reasons. If we have just searched a major shared subdirectory 

for a particular file without finding it, we want to avoid searching that 

subdirectory again; the second search would be a waste of time. 

If cycles are allowed to exist in the directory, we likewise want to avoid 

searching any component twice, for reasons of correctness as well as 

performance. A poorly designed algorithm might result in an infinite loop 

continually searching through the cycle and never terminating 

A similar problem exists when we are trying to determine when a file can 

be deleted. With acyclic-graph directory structures, a value of 0 in the 

reference count means that there are no more references to the file or 

directory, and the file can be deleted. However, when cycles exist, the 

reference count may not be 0 even when it is no longer possible to refer to 

a directory or file. This anomaly results from the possibility of self-

referencing (or a cycle) in the directory structure. In this case, we generally 

need to use a garbage collection scheme to determine when the last 
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reference has been deleted and the disk space can be reallocated. Garbage 

collection involves traversing the entire file system, marking everything 

that can be accessed. Then, a second pass collects everything that is not 

marked onto a list of free space. (A similar marking procedure can be used 

to ensure that a traversal or search will cover everything in the file system 

once and only once.) Garbage collection for a disk-based file system, 

however, is extremely time consuming and is thus seldom attempted. 

 

Figure 10.6 General graph directory 

Garbage collection is necessary only because of possible cycles in the 

graph. Thus, an acyclic-graph structure is much easier to work with. The 

difficulty is to avoid cycles as new links are added to the structure. How do 

we know when a new link will complete a cycle? There are algorithms to 

detect cycles in graphs; however, they are computationally expensive, 

especially when the graph is on disk storage. A simpler algorithm in the 

special case of directories and links is to bypass links during directory 

traversal. Cycles are avoided, and no extra overhead is incurred. 

Check your Progress 

1. How to create a File? 

2. How to write a file? 

3. How to read a file? 

4. How to delete a file? 

5. What truncating a file? 

 

10.5. ANSWERS TO CHECK YOUR PROGRESS 
 

1. Two steps are necessary to create a file. First, space in the file 

system must be found for the file. We discuss how to allocate space 

for the file in Chapter 12. Second, an entry for the new file must be 

made in the directory. 

 

2. To write a file, we make a system call specifying both the name of 

the file and the information to be written to the file. Given the name 
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of the file, the system searches the directory to find the file’s 

location. The system must keep a write pointer to the location in the 

file Self-Instructional Material NOTES 136 where the next write is 

to take place. The write pointer must be updated whenever a write 

occurs. 

 

3. To read from a file, we use a system call that specifies the name of 

the file and where (in memory) the next block of the file should be 

put. Again, the directory is searched for the associated entry, and 

the system needs to keep a read pointer to the location in the file 

where the next read is to take place. Once the read has taken place, 

the read pointer is updated. Because a process is usually either 

reading from or writing to a file, the current operation location can 

be kept as a per-process current fileposition pointer. Both the read 

and write operations use this same pointer, saving space and 

reducing system complexity. 

 

4. To delete a file, we search the directory for the named file. Having 

found the associated directory entry, we release all file space, so 

that it can be reused by other files, and erase the directory entry. 

 

5. The user may want to erase the contents of a file but keep its 

attributes. Rather than forcing the user to delete the file and then 

recreate it, this function allows all attributes to remain unchanged—

except for file length—but lets the file be reset to length zero and 

its file space released 

 

10.6.  SUMMARY 
 Files are the important storage structures in which data can be 

easily stores and access.  

 To write a file, we make a system call specifying both the name of 

the file and the information to be written to the file.  

 Direct-access files are of great use for immediate access to large 

amounts of information. Databases are often of this type. 

 A shared directory or file exists in the file system in two (or more) 

places at once.  

 A single-level directory has significant limitations, however, when 

the number of files increases or when the system has more than one 

user. 

 

10.7. KEYWORDS 
 

 File: A file is a named collection of related information that is 

recorded on secondary storage such as magnetic disks, magnetic 

tapes and optical disks. 

 Sequential access: Information in the file is processed in order, 

one record after the other. 
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 Directory: The directory can be viewed as a symbol table that 

translates file names into their directory entries.  

 Single level dictionary: The simplest directory structure is the 

single-level directory. All files are contained in the same directory, 

which is easy to support and understand  

 Protection. Access-control information determines who can do 

reading, writing, executing, and so on. 

 

10.8. SELF ASSESSMENT QUESTIONS AND EXERCISES 

 

Short Answer questions: 

1. What is Sequential Access? 

2. What is Direct Access? 

3. What is Single Level Directory? 

4. What is Two Level Directory? 

5. What is Acyclic  Graph Directory? 

Long Answer questions: 

1. Explain File Operations? 

2. Explain File Attributes? 
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UNIT XI STRUCTURES     
 

Structure 

11.0 Introduction 

11.1Objective 

11.2 File-System Mounting 

11.3 File Sharing 

11.4 Protection 

11.5 Answers to Check Your Progress Questions 

11.6 Summary 

11.7 Key Words 

11.8 Self Assessment Questions and Exercises 

11.9 Further Readings 

 

11.0 INTRODUCTION 
This unit describes the file system mounting and the various ways the file 

system can be shared. Mounting is a process by which the operating 

system makes files and directories on a storage device (such as hard drive, 

CD-ROM, or network share) available for users to access via the 

computer's file system. In general, the process of mounting comprises 

operating system acquiring access to the storage medium; recognizing, 

reading, processing file system structure and metadata on it; before 

registering them to the virtual file system (VFS) component. The location 

in VFS that the newly-mounted medium was registered is called mount 

point; when the mounting process is completed, the user can access files 

and directories on the medium from there. Once the file us created it also 

needs to protect. The file protection method helps to safeguard the file 

information and view it more protectively. 

11.1 OBJECTIVE 

This unit explores and helps to understand the user with the following 

concepts such as 

 File system Mounting 

 File sharing 

 Protection 

11.2 FILE-SYSTEM MOUNTING 

Just as a file must be opened before it is used, a file system must be 

mounted before it can be available to processes on the system. More 

specifically, the directory structure may be built out of multiple volumes, 

which must be mounted to make them available within the file-system 

name space. The mount procedure is straightforward. The operating system 

is given the name of the device and the mount point—the location within 

the file structure where the file system is to be attached. Some operating 

systems require that a file system type be provided, while others inspect 
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the structures of the device and determine the type of file system. 

Typically, a mount point is an empty directory. For instance, on a UNIX 

system, a file system containing a user’s home directories might be 

mounted as /home; then, to access the directory structure within that file 

system, we could precede the directory names with /home, as in 

/home/jane. Mounting that file system under /users would result in the path 

name /users/jane, which we could use to reach the same directory. 

Next, the operating system verifies that the device contains a valid file 

system. It does so by asking the device driver to read the device directory 

and verifying that the directory has the expected format. Finally, the 

operating system notes in its directory structure that a file system is 

mounted at the specified mount point. This scheme enables the operating 

system to traverse its directory structure, switching among file systems, 

and even file systems of varying types, as appropriate. 

 

 

Figure 11.1 File system. (a) Existing system. (b) Unmounted volume.  

To illustrate file mounting, consider the file system depicted in Figure 

11.14, where the triangles represent subtrees of directories that are of 

interest. Figure 11.14(a) shows an existing file system, while Figure 

11.14(b) shows an unmounted volume residing on /device/dsk. At this 

point, only the files on the existing file system can be accessed. Figure 

11.15 shows the effects of mounting the volume residing on /device/dsk 

over /users. If the volume is unmounted, the file system is restored to the 

situation depicted in Figure 11.14. Systems impose semantics to clarify 

functionality. For example, a system may disallow a mount over a 

directory that contains files; or it may make the mounted file system 

available at that directory and obscure the directory’s existing files until 

the file system is unmounted, terminating the use of the file system and 

allowing access to the original files in that directory. As another example, a 
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system may allow the same file system to be mounted repeatedly, at 

different mount points; or it may only allow one mount per file system. 

Consider the actions of the Mac OS X operating system. Whenever the 

system encounters a disk for the first time (either at boot time or while the 

system is running), the Mac OS X operating system searches for a file 

system on the device. If it finds one, it automatically mounts the file 

system under m the /Volumes directory, adding a folder icon labeled with 

the name of the file system (as stored in the device directory). The user is 

then able to click on the icon and thus display the newly mounted file  

 

Figure 11.2 Mount point. 

The Microsoft Windows family of operating systems maintains an 

extended two-level directory structure, with devices and volumes assigned 

drive letters. Volumes have a general graph directory structure associated 

with the drive letter. The path to a specific file takes the form of drive-

letter:\path\to\file. The more recent versions of Windows allow a file 

system to be mounted anywhere in the directory tree, just as UNIX does. 

Windows operating systems automatically discover all devices and mount 

all located file systems at boot time. In some systems, like UNIX, the 

mount commands are explicit. A system configuration file contains a list of 

devices and mount points for automatic mounting at boot time, but other 

mounts may be executed manually. 

11.3 FILE SHARING 

 In this section, we examine more aspects of file sharing. We begin by 

discussing general issues that arise when multiple users share files. Once 

multiple users are allowed to share files, the challenge is to extend sharing 

to multiple file systems, including remote file systems; we discuss that 
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challenge as well. Finally, we consider what to do about conflicting actions 

occurring on shared files.  

11.3.1 MULTIPLE USERS 

When an operating system accommodates multiple users, the issues of file 

sharing, file naming, and file protection become preeminent. Given a 

directory structure that allows files to be shared by users, the system must 

mediate the file sharing. The system can either allow a user to access the 

files of other users by default or require that a user specifically grant access 

to the files. These are the issues of access control and protection, which are 

covered in Section 11.6. To implement sharing and protection, the system 

must maintain more file and directory attributes than are needed on a 

single-user system. Although many approaches have been taken to meet 

this requirement, most systems have evolved to use the concepts of file (or 

directory) owner (or user) and group. The owner is the user who can 

change attributes and grant access and who has the most control over the 

file. The group attribute defines a subset of users who can share access to 

the file. For example, the owner of a file on a UNIX system can issue all 

operations on a file, while members of the file’s group can execute one 

subset of those operations, and all other users can execute another subset of 

operations. Exactly which operations can be executed by group members 

and other users is definable by the file’s owner. More details on permission 

attributes are included in the next section. 

The owner and group IDs of a given file (or directory) are stored with the 

other file attributes. When a user requests an operation on a file, the user 

ID can be compared with the owner attribute to determine if the requesting 

user is the owner of the file. Likewise, the group IDs can be compared. The 

result indicates which permissions are applicable. The system then applies 

those permissions to the requested operation and allows or denies it. Many 

systems have multiple local file systems, including volumes of a single 

disk or multiple volumes on multiple attached disks. In these cases, the ID 

checking and permission matching are straightforward, once the file 

systems are mounted. 

11.3.2 Remote File Systems 

With the advent of networks communication among remote computers 

became possible. Networking allows the sharing of resources spread across 

a campus or even around the world. One obvious resource to share is data 

in the form of files. Through the evolution of network and file technology, 

remote file-sharing methods have changed. The first implemented method 

involves manually transferring files between machines via programs like 

ftp. The second major method uses a distributed file system (DFS) in 

which remote directories are visible from a local machine. In some ways, 

the third method, the WorldWide 

Web, is a reversion to the first. A browser is needed to gain access to the 

remote files, and separate operations (essentially a wrapper for ftp) are 

used to transfer files. Increasingly, cloud computing is being used for file 
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sharing as well. ftp is used for both anonymous and authenticated access. 

Anonymous access allows a user to transfer files without having an 

account on the remote system. The WorldWideWeb uses anonymous file 

exchange almost exclusively. DFS involves a much tighter integration 

between the machine that is accessing the remote files and the machine 

providing the files. This integration adds complexity, as we describe in this 

section. 

11.3.3 The Client–Server Model 

Remote file systems allow a computer to mount one or more file systems 

from one or more remote machines. In this case, the machine containing 

the files is the server, and the machine seeking access to the files is the 

client. The client–server relationship is common with networked machines. 

Generally, the server declares that a resource is available to clients and 

specifies exactly which resource (in this case, which files) and exactly 

which clients. A server can serve multiple clients, and a client can use 

multiple servers, depending on the implementation details of a given 

client–server facility. The server usually specifies the available files on a 

volume or directory level. Client identification is more difficult. A client 

can be specified by a network name or other identifier, such as an IP 

address, but these can be spoofed, or imitated. As a result of spoofing, an 

unauthorized client could be allowed access to the server. More secure 

solutions include secure authentication of the client via encrypted keys. 

Unfortunately, with security come many challenges, including ensuring 

compatibility of the client and server (they must use the same encryption 

algorithms) and security of key exchanges (intercepted keys could again 

allow unauthorized access). Because of the difficulty of solving these 

problems, unsecure authentication methods are most commonly used. 

In the case of UNIX and its network file system (NFS), authentication 

takes place via the client networking information, by default. In this 

scheme, the user’s IDs on the client and server must match. If they do not, 

the server will be unable to determine access rights to files. Consider the 

example of a user who has an ID of 1000 on the client and 2000 on the 

server. A request from the client to the server for a specific file will not be 

handled appropriately, as the server will determine if user 1000 has access 

to the file rather than basing the determination on the real user ID of 2000. 

Access is thus granted or denied based on incorrect authentication 

information. The server must trust the client to present the correct user ID. 

Note that the NFS protocols allow many-to-many relationships. That is, 

many servers can provide files to many clients. In fact, a given machine 

can be both a server to some NFS clients and a client of other NFS servers. 

Once the remote file system is mounted, file operation requests are sent on 

behalf of the user across the network to the server via the DFS protocol. 

Typically, a file-open request is sent along with the ID of the requesting 

user. The server then applies the standard access checks to determine if the 

user has credentials to access the file in the mode requested. The request is 

either allowed or denied. If it is allowed, a file handle is returned to the 

client application, and the application then can perform read, write, and 
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other operations on the file. The client closes the file when access is 

completed. The operating system may apply semantics similar to those for 

a local file-system mount or may use different semantics. 

11.3.4 Distributed Information Systems 

To make client–server systems easier to manage, distributed information 

systems, also known as distributed naming services, provide unified access 

to the information needed for remote computing. The domain name system 

(DNS) provides host-name-to-network-address translations for the entire 

Internet. Before DNS became widespread, files containing the same 

information were sent via e-mail or ftp between all networked hosts. 

Obviously, this methodology was not scalable. Other distributed 

information systems provide user name/password/user ID/group ID space 

for a distributed facility. UNIX systems have employed a wide variety of 

distributed information methods. Sun Microsystems (now part of Oracle 

Corporation) introduced yellow pages (since renamed network information 

service, or NIS), and most of the industry adopted its use. It centralizes 

storage of user names, host names, printer information, and the like. 

Unfortunately, it uses unsecure authentication methods, including sending 

user passwords unencrypted (in clear text) and identifying hosts by IP 

address. Sun’s NIS+ was a much more secure replacement for NIS but was 

much more complicated and was not widely adopted. In the case of 

Microsoft’s common Internet file system (CIFS), network information is 

used in conjunction with user authentication (user name and password) to 

create a network login that the server uses to decide whether to allow or 

deny access to a requested file system. For this authentication to be valid, 

the user names must match from machine to machine (as with NFS). 

Microsoft uses active directory as a distributed naming structure to provide 

a single name space for users. Once established, the distributed naming 

facility is used by all clients and servers to authenticate users. 

The industry is moving toward use of the lightweight directory-access 

protocol (LDAP) as a secure distributed naming mechanism. In fact, active 

directory is based on LDAP. Oracle Solaris and most other major operating 

systems include LDAP and allow it to be employed for user authentication 

as well as system-wide retrieval of information, such as availability of 

printers. Conceivably, one distributed LDAP directory could be used by an 

organization to store all user and resource information for all the 

organization’s computers. The result would be secure single sign-on for 

users, who would enter their authentication information once for access to 

all computers within the organization. It would also ease system-

administration efforts by combining, in one location, information that is 

currently scattered in various files on each system or in different 

distributed information services. 

11.3.5 Failure Modes 

Local file systems can fail for a variety of reasons, including failure of the 

disk containing the file system, corruption of the directory structure or 
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other disk-management information (collectively called metadata), disk-

controller failure, cable failure, and host-adapter failure. User or system-

administrator failure can also cause files to be lost or entire directories or 

volumes to be deleted. Many of these failures will cause a host to crash and 

an error condition to be displayed, and human intervention will be required 

to repair the damage. Remote file systems have even more failure modes. 

Because of the complexity of network systems and the required 

interactions between remote machines, many more problems can interfere 

with the proper operation of remote file systems. In the case of networks, 

the network can be interrupted between two hosts. Such interruptions can 

result from hardware failure, poor hardware configuration, or networking 

implementation issues. Although some networks have built-in resiliency, 

including multiple paths between hosts, many do not. Any single failure 

can thus interrupt the flow of DFS commands. 

Consider a client in the midst of using a remote file system. It has files 

open from the remote host; among other activities, it may be performing 

directory lookups to open files, reading or writing data to files, and closing 

files. Now consider a partitioning of the network, a crash of the server, or 

even a scheduled shutdown of the server. Suddenly, the remote file system 

is no longer reachable. This scenario is rather common, so it would not be 

appropriate for the client system to act as it would if a local file system 

were lost. Rather, the system can either terminate all operations to the lost 

server or delay operations until the server is again reachable. These failure 

semantics are defined and implemented as part of the remote-file-system 

protocol. Termination of all operations can result in users’ losing data—

and patience. Thus, most DFS protocols either enforce or allow delaying of 

file-system operations to remote hosts, with the hope that the remote host 

will become available again. 

To implement this kind of recovery from failure, some kind of state 

information may be maintained on both the client and the server. If both 

server and client maintain knowledge of their current activities and open 

files, then they can seamlessly recover from a failure. In the situation 

where the server crashes but must recognize that it has remotely mounted 

exported file systems and opened files, NFS takes a simple approach, 

implementing a stateless DFS. 

In essence, it assumes that a client request for a file read or write would not 

have occurred unless the file system had been remotely mounted and the 

file had been previously open. The NFS protocol carries all the information 

needed to locate the appropriate file and perform the requested operation. 

Similarly, it does not track which clients have the exported volumes 

mounted, again assuming that if a request comes in, it must be legitimate. 

While this stateless approach makes NFS resilient and rather easy to 

implement, it also makes it unsecure. For example, forged read or write 

requests could be allowed by an NFS server. These issues are addressed in 

the industry standard NFS Version 4, in which NFS is made stateful to 

improve its security, performance, and functionality. 
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11.3.6 Consistency Semantics 

Consistency semantics represent an important criterion for evaluating any 

file system that supports file sharing. These semantics specify how 

multiple users of a system are to access a shared file simultaneously. In 

particular, they specify when modifications of data by one user will be 

observable by other users. These semantics are typically implemented as 

code with the file system. 

Consistency semantics are directly related to the process synchronization 

algorithms of Chapter 5. However, the complex algorithms of that chapter 

tend not to be implemented in the case of file I/O because of the great 

latencies and slow transfer rates of disks and networks. For example, 

performing an atomic transaction to a remote disk could involve several 

network communications, several disk reads and writes, or both. Systems 

that attempt such a full set of functionalities tend to perform poorly. A 

successful implementation of complex sharing semantics can be found in 

the Andrew file system. For the following discussion, we assume that a 

series of file accesses (that is, reads and writes) attempted by a user to the 

same file is always enclosed between the open() and close() operations. 

The series of accesses between the open() and close() operations makes up 

a file session. To illustrate the concept, we sketch several prominent 

examples of consistency semantics. 

11.3.7 Immutable-Shared-Files Semantics 

A unique approach is that of immutable shared files. Once a file is declared 

as shared by its creator, it cannot be modified. An immutable file has two 

key properties: its name may not be reused, and its contents may not be 

altered. Thus, the name of an immutable file signifies that the contents of 

the file are fixed. 

11.4 PROTECTION 

When information is stored in a computer system, we want to keep it safe 

from physical damage (the issue of reliability) and improper access (the 

issue of protection). Reliability is generally provided by duplicate copies of 

files. Many computers have systems programs that automatically (or 

through computer-operator intervention) copy disk files to tape at regular 

intervals (once per day or week or month) to maintain a copy should a file 

system be accidentally destroyed.  

File systems can be damaged by hardware problems (such as errors in 

reading or writing), power surges or failures, head crashes, dirt, 

temperature extremes, and vandalism. Files may be deleted accidentally. 

Bugs in the file-system software can also cause file contents to be lost. 

Reliability is covered in more detail in Chapter 10. 

Protection can be provided in many ways. For a single-user laptop system, 

we might provide protection by locking the computer in a desk drawer or 

file cabinet. In a larger multiuser system, however, other mechanisms are 

needed. 



 

182 

 

Structures 

Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self – Instructional Material 

 

11.4.1 Types of Access 

The need to protect files is a direct result of the ability to access files. 

Systems that do not permit access to the files of other users do not need 

protection. Thus, we could provide complete protection by prohibiting 

access. Alternatively, we could provide free access with no protection. 

Both approaches are too extreme for general use. What is needed is 

controlled access. Protection mechanisms provide controlled access by 

limiting the types of file access that can be made. Access is permitted or 

denied depending on several factors, one of which is the type of access 

requested. Several different types of operations may be controlled: 

• Read. Read from the file. 

• Write.Write or rewrite the file. 

• Execute. Load the file into memory and execute it. 

• Append.Write new information at the end of the file. 

• Delete. Delete the file and free its space for possible reuse. 

• List. List the name and attributes of the file. 

Other operations, such as renaming, copying, and editing the file, may also 

be controlled. For many systems, however, these higher-level functions 

may be implemented by a system program that makes lower-level system 

calls. Protection is provided at only the lower level. For instance, copying a 

file maybe implemented simply by a sequence of read requests. In this 

case, a user with read access can also cause the file to be copied, printed, 

and so on. 

Many protection mechanisms have been proposed. Each has advantages 

and disadvantages and must be appropriate for its intended application. A 

small computer system that is used by only a few members of a research 

group, for example, may not need the same types of protection as a large 

corporate computer that is used for research, finance, and personnel 

operations.  

11.4.2 Access Control 

The most common approach to the protection problem is to make access 

dependent on the identity of the user. Different users may need different 

types of access to a file or directory. The most general scheme to 

implement identity dependent access is to associate with each file and 

directory an access-control list (ACL) specifying user names and the types 

of access allowed for each user. When a user requests access to a particular 

file, the operating system checks the access list associated with that file. If 

that user is listed for the requested access, the access is allowed. 

Otherwise, a protection violation occurs, and the user job is denied access 

to the file. 
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This approach has the advantage of enabling complex access 

methodologies. The main problem with access lists is their length. If we 

want to allow everyone to read a file, we must list all users with read 

access. This technique has two undesirable consequences: 

• Constructing such a list may be a tedious and unrewarding task, 

especially if we do not know in advance the list of users in the system. 

• The directory entry, previously of fixed size, now must be of variable 

size, resulting in more complicated space management. 

These problems can be resolved by use of a condensed version of the 

access list. To condense the length of the access-control list, many systems 

recognize three classifications of users in connection with each file: 

• Owner. The user who created the file is the owner. 

• Group. A set of users who are sharing the file and need similar access is a 

group, or work group. 

• Universe. All other users in the system constitute the universe. 

The most common recent approach is to combine access-control lists with 

the more general (and easier to implement) owner, group, and universe 

access control scheme just described. For example, Solaris uses the three 

categories of access by default but allows access-control lists to be added 

to specific files and directories when more fine-grained access control is 

desired. To illustrate, consider a person, Sara, who is writing a new book. 

She has hired three graduate students (Jim, Dawn, and Jill) to help with the 

project. The text of the book is kept in a file named book.tex. The 

protection associated with this file is as follows: 

• Sara should be able to invoke all operations on the file. 

• Jim, Dawn, and Jill should be able only to read and write the file; they 

should not be allowed to delete the file. 
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Figure11.3 windows 7 access control 

• All other users should be able to read, but not write, the file. (Sara is 

interested in letting as many people as possible read the text so that she can 

obtain feedback.) 

To achieve such protection, we must create a new group—say, text— with 

members Jim, Dawn, and Jill. The name of the group, text, must then be 

associated with the file book.tex, and the access rights must be set in 

accordance with the policy we have outlined. Now consider a visitor to 

whom Sara would like to grant temporary access to Chapter 1. The visitor 

cannot be added to the text group because that would give him access to all 

chapters. Because a file can be in only one group. 

 

Check your Progress 

1. What is Access Control? 

2. What is Read, Write and Execute access? 

3. What is Immutable-Shared-Files Semantics? 

4. What is a client and server? 

5. What is Remote File System? 

 

11.5. ANSWERS TO CHECK YOUR PROGRESS 
 

1. The goal of access control is to minimize the risk of 

unauthorized access to physical and logical systems. Access 

control is a fundamental component of security compliance 

programs that ensures security technology and access 

control policies are in place to protect confidential information, 

such as customer data. 

 

2. Read. Read from the file. 

Write.Write or rewrite the file. 

Execute. Load the file into memory and execute it. 

 

3. When a file is declared as shared by its creator, it 

becomes immutable and the name cannot be re-used for any other 

resource. Hence it becomes read-only, and shared access is simple. 

 

4. The machine containing the files is the server, and the machine 

seeking access to the files is the client. 

 

5. The RFS (Remote File System) is a file system that allows the user 

to "share" a directory on a PC with remote PC over a serial 

connection. Remote PC will be able to access files on the shared 

PC directory just as they were local files; they can be opened, read, 

written, closed and so on. 
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11.6.  SUMMARY 
 Once multiple users are allowed to share files, the challenge is 

to extend sharing to multiple file systems, including remote file 

systems  

 Networking allows the sharing of resources spread across a 

campus or even around the world. 

 Remote file systems allow a computer to mount one or more 

file systems from one or more remote machines. 

 Local file systems can fail for a variety of reasons, including 

failure of the disk containing the file system, corruption of the 

directory structure or other disk-management information, and 

so on. 

 The most common approach to the protection problem is to 

make access dependent on the identity of the user. 

 

11.7. KEYWORDS 
 

 Distributed information system: To make client–server systems 

easier to manage, distributed information systems, also known as 

distributed naming services, provide unified access to the 

information needed for remote computing.  

 DNS: The domain name system (DNS) provides host-name-to-

network-address translations for the entire Internet. 

 Consistency semantics: Consistency semantics represent an 

important criterion for evaluating any file system that supports file 

sharing. 

 
11.8. SELF ASSESSMENT QUESTIONS AND EXERCISES 

 

Short Answer questions: 

1. What is Client server model? 

2. What is Distributed Information system? 

3. What is Failure modes? 

4. What is Consistency Semantics? 

5. What are types of Access?  

Long Answer questions: 

1. Explain File System Mounting? 

2. Explain File Sharing? 

3. Explain Protection? 
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UNIT XII 

IMPLEMENTING FILE SYSTEMS     
 

Structure 

12.0 Introduction 

12.1 Objectives 

12.2 File-System Structure 

12.3 File-System Implementation 

12.4 Answers to Check Your Progress Questions 

12.5 Summary 

12.6 Key Words 

12.7 Self Assessment Questions and Exercises 

12.8 Further Readings 

 

 

12.0 INTRODUCTION 

This unit briefs the file system implementation and how it is structured. 

Disks offer the massive amount of secondary storage where a file system 

can be maintained. They have two characteristics which make them a 

suitable medium for storing various files. A disk can be used to rewrite in 

place; it is possible to read a chunk from the disk, modify the chunk and 

write it back there in the same place. A disk can access directly any given 

block of data it contains. Hence, it is easy to access any file either in 

sequence or at random and switching from one single file to another need 

only to move the read-write heads and wait for the disk to rotate to that 

specific location. This also explains the free space management on how the 

files can be allocated and retrieved. The file system basic operations and 

implementation are illustrated. 

12.1 OBJECTIVES 

The user can understand the following concepts when they go through this 

unit such as 

 Structure of the File system 

 Implementation of file system 

12.2 FILE-SYSTEM STRUCTURE 

Disks provide most of the secondary storage on which file systems are 

maintained. Two characteristics make them convenient for this purpose:  

1. A disk can be rewritten in place; it is possible to read a block from the 

disk, modify the block, and write it back into the same place. 
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2. A disk can access directly any block of information it contains. Thus, it 

is simple to access any file either sequentially or randomly, and switching 

from one file to another requires only moving the read–write heads and 

waiting for the disk to rotate. 

To improve I/O efficiency, I/O transfers between memory and disk are 

performed in units of blocks. Each block has one or more sectors. 

Depending on the disk drive, sector size varies from 32 bytes to 4,096 

bytes; the usual size is 512 bytes. 

 

 

Figure12.1 Layered Structure 

File systems provide efficient and convenient access to the disk by 

allowing data to be stored, located, and retrieved easily. A file system 

poses two quite different design problems. The first problem is defining 

how the file system should look to the user. This task involves defining a 

file and its attributes, the operations allowed on a file, and the directory 

structure for organizing files. The second problem is creating algorithms 

and data structures to map the logical file system onto the physical 

secondary-storage devices. The file system itself is generally composed of 

many different levels. The structure shown in Figure 12.1 is an example of 

a layered design. Each level in the design uses the features of lower levels 

to create new features for use by higher levels.  

The I/O control level consists of device drivers and interrupt handlers to 

transfer information between the main memory and the disk system. A 

device driver can be thought of as a translator. Its input consists of high-

level commands such as ―retrieve block 123.‖ Its output consists of low-

level, hardware-specific instructions that are used by the hardware 

controller, which interfaces the I/O device to the rest of the system. The 

device driver usually writes specific bit patterns to special locations in the 
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I/O controller’s memory to tell the controller which device location to act 

on and what actions to take.  

The basic file system needs only to issue generic commands to the 

appropriate device driver to read and write physical blocks on the disk. 

Each physical block is identified by its numeric disk address (for example, 

drive 1, cylinder 73, track 2, sector 10). This layer also manages the 

memory buffers and caches that hold various file-system, directory, and 

data blocks. A block in the buffer is allocated before the transfer of a disk 

block can occur. When the buffer is full, the buffer manager must find 

more buffer memory or free up buffer space to allow a requested I/O to 

complete. Caches are used to hold frequently used file-system metadata to 

improve performance, so managing their contents is critical for optimum 

system performance. 

The file-organization module knows about files and their logical blocks, as 

well as physical blocks. By knowing the type of file allocation used and the 

location of the file, the file-organization module can translate logical block 

addresses to physical block addresses for the basic file system to transfer. 

Each file’s logical blocks are numbered from 0 (or 1) through N. Since the 

physical blocks containing the data usually do not match the logical 

numbers, a translation is needed to locate each block.  

The file-organization module also includes the free-space manager, which 

tracks unallocated blocks and provides these blocks to the file-organization 

module when requested. Finally, the logical file system manages metadata 

information. Metadata includes all of the file-system structure except the 

actual data (or contents of the files). The logical file system manages the 

directory structure to provide the file-organization module with the 

information the latter needs, given a symbolic file name. It maintains file 

structure via file-control blocks. A file control block (FCB) (an inode in 

UNIX file systems) contains information about the file, including 

ownership, permissions, and location of the file contents.  

When a layered structure is used for file-system implementation, 

duplication of code is minimized. The I/O control and sometimes the basic 

file-system code can be used by multiple file systems. Each file system can 

then have its own logical file-system and file-organization modules. 

Unfortunately, layering can introduce more operating-system overhead, 

which may result in decreased performance. The use of layering, including 

the decision about how many layers to use and what each layer should do, 

is a major challenge in designing new systems. 

Many file systems are in use today, and most operating systems support 

more than one. For example, most CD-ROMs are written in the ISO 9660 

format, a standard format agreed on by CD-ROM manufacturers. In 

addition to removable-media file systems, each operating system has one 

or more disk based file systems. UNIX uses the UNIX file system (UFS), 

which is based on the Berkeley Fast File System (FFS). Windows supports 

disk file-system formats of FAT, FAT32, and NTFS (or Windows NT File 

System), as well as CD-ROM and DVD file-system formats. Although 
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Linux supports over forty different file systems, the standard Linux file 

system is known as the extended file system, with the most common 

versions being ext3 and ext4. There are also distributed file systems in 

which a file system on a server is mounted by one or more client 

computers across a network. 

File-system research continues to be an active area of operating-system 

design and implementation. Google created its own file system to meet the 

company’s specific storage and retrieval needs, which include high 

performance access from many clients across a very large number of disks. 

Another interesting project is the FUSE file system, which provides 

flexibility in file-system development and use by implementing and 

executing file systems as user-level rather than kernel-level code. Using 

FUSE, a user can add a new file system to a variety of operating systems 

and can use that file system to manage her files. 

12.3 FILE-SYSTEM IMPLEMENTATION 

As was described in Section 11.1.2, operating systems implement open() 

and close() systems calls for processes to request access to file contents. In 

this section, we delve into the structures and operations used to implement 

file-system operations. 

12.3.1 Overview 

Several on-disk and in-memory structures are used to implement a file 

system. These structures vary depending on the operating system and the 

file system, but some general principles apply. On disk, the file system 

may contain information about how to boot an operating system stored 

there, the total number of blocks, the number and location of free blocks, 

the directory structure, and individual files. Many of these structures are 

detailed throughout the remainder of this chapter. Here, we describe them 

briefly: 

• A boot control block (per volume) can contain information needed by the 

system to boot an operating system from that volume. If the disk does not 

contain an operating system, this block can be empty. It is typically the 

first block of a volume. In UFS, it is called the boot block. In NTFS, it is 

the partition boot sector. 

• A volume control block (per volume) contains volume (or partition) 

details, such as the number of blocks in the partition, the size of the blocks, 

a free-block count and free-block pointers, and a free-FCB count and FCB 

pointers. In UFS, this is called a superblock. In NTFS, it is stored in the 

master file table. 

• A directory structure (per file system) is used to organize the files. In 

UFS, this includes file names and associated in node numbers. In NTFS, it 

is stored in the master file table. 

• A per-file FCB contains many details about the file. It has a unique 

identifier number to allow association with a directory entry. In NTFS, this 
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information is actually stored within the master file table, which uses a 

relational database structure, with a row per file. 

The in-memory information is used for both file-system management and 

performance improvement via caching. The data are loaded at mount time, 

updated during file-system operations, and discarded at dismount. Several 

types of structures may be included. 

• An in-memory mount table contains information about each mounted 

volume. 

• An in-memory directory-structure cache holds the directory information 

of recently accessed directories. (For directories at which volumes are 

mounted, it can contain a pointer to the volume table.) 

• The system-wide open-file table contains a copy of the FCB of each open 

file, as well as other 

The per-process open-file table contains a pointer to the appropriate entry 

in the system-wide open-file table, as well as other information. 

• Buffers hold file-system blocks when they are being read from disk or 

written to disk. 

To create a new file, an application program calls the logical file system. 

The logical file system knows the format of the directory structures. To 

create a new file, it allocates a new FCB. (Alternatively, if the file-system 

implementation creates all FCBs at file-system creation time, an FCB is 

allocated from the set of free FCBs.) The system then reads the appropriate 

directory into memory, updates it with the new file name and FCB, and 

writes it back to the disk. Atypical FCB is shown in Figure 12.2. 

12.3.2 Partitions and Mounting 

The layout of a disk can have many variations, depending on the operating 

system. A disk can be sliced into multiple partitions, or a volume can span 

multiple partitions on multiple disks. Each partition can be either ―raw,‖ 

containing no file system, or ―cooked,‖ containing a file system. Raw disk 

is used where no file system is appropriate. UNIX swap space can use a 

raw partition, for example, since it uses its own format on disk and does 

not use a file system. Likewise, some databases use raw disk and format 

the data to suit their needs. Raw disk can also hold information needed by 

disk RAID systems, such as bit maps indicating which blocks are mirrored 

and which have changed and need to be mirrored. Similarly, raw disk can 

contain a miniature database holding RAID configuration information, 

such as which disks are members of each RAID set. Raw disk use is 

discussed in Section 10.5.1. 

Boot information can be stored in a separate partition, as described in 

Section 10.5.2. Again, it has its own format, because at boot time the 

system does not have the file-system code loaded and therefore cannot 

interpret the file-system format. Rather, boot information is usually a 
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sequential series of blocks, loaded as an image into memory. Execution of 

the image starts at a predefined location, such as the first byte. This boot 

loader in turn knows enough about the file-system structure to be able to 

find and load the kernel and start it executing. 

It can contain more than the instructions for how to boot a specific 

operating system. For instance, many systems can be dual-booted, allowing 

us to install multiple operating systems on a single system. How does the 

system know which one to boot? A boot loader that understands multiple 

file systems and multiple operating systems can occupy the boot space. 

Once loaded, it can boot one of the operating systems available on the disk. 

The disk can have multiple partitions, each containing a different type of 

file system and a different operating system. 

The root partition, which contains the operating-system kernel and 

sometimes other system files, is mounted at boot time. Other volumes can 

be automatically mounted at boot or manually mounted later, depending on 

the operating system. As part of a successful mount operation, the 

operating system verifies that the device contains a valid file system. It 

does so by asking the device driver to read the device directory and 

verifying that the directory has the expected format. If the format is 

invalid, the partition must have its consistency checked and possibly 

corrected, either with or without user intervention. Finally, the operating 

system notes in its in-memory mount table that a file system is mounted, 

along with the type of the file system. The details of this function depend 

on the operating system.  
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Figure12.2 in memory file structures 

Microsoft Windows–based systems mount each volume in a separate name 

space, denoted by a letter and a colon. To record that a file system is 

mounted at F:, for example, the operating system places a pointer to the 

file system in a field of the device structure corresponding to F:. When a 

process specifies the driver letter, the operating system finds the 

appropriate file-system pointe rand traverses the directory structures on 

that device to find the specified file or directory. Later versions of 

Windows can mount a file system at any point within the existing directory 

structure. 

On UNIX, file systems can be mounted at any directory. Mounting is 

implemented by setting a flag in the in-memory copy of the inode for that 

directory. The flag indicates that the directory is a mount point. A field 

then points to an entry in the mount table, indicating which device is 

mounted there. The mount table entry contains a pointer to the superblock 

of the file system on that device. This scheme enables the operating system 

to traverse its directory structure, switching seamlessly among file systems 

of varying types. 

12.3.3 Virtual File Systems 

The previous section makes it clear that modern operating systems must 

concurrently support multiple types of file systems. But how does an 

operating system allow multiple types of file systems to be integrated into 

a directory structure? And how can users seamlessly move between file-

system types as they navigate the file-system space? We now discuss some 

of these implementation details. An obvious but suboptimal method of 

implementing multiple types of file systems is to write directory and file 

routines for each type. Instead, however, most operating systems, including 

UNIX, use object-oriented techniques to simplify, organize, and 

modularize the implementation. The use of these methods allows very 

dissimilar file-system types to be implemented within the same structure, 

including network file systems, such as NFS. Users can access files 

contained within multiple file systems on the local disk or even on file 

systems available across the network. 

Data structures and procedures are used to isolate the basic system call 

functionality from the implementation details. Thus, the file-system 

implementation consists of three major layers, as depicted schematically in 

Figure 12.4. The first layer is the file-system interface, based on the open(), 

read(), write(), and close() calls and on file descriptors. The second layer is 

called the virtual file system (VFS) layer. The VFS layer serves two 

important functions: 

1. It separates file-system-generic operations from their implementation by 

defining a clean VFS interface. Several implementations for the VFS 

interface may coexist on the same machine, allowing transparent access to 

different types of file systems mounted locally. 
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2. It provides a mechanism for uniquely representing a file throughout a 

network. The VFS is based on a file-representation structure, called a 

vnode, that contains a numerical designator for a network-wide unique file. 

(UNIX inodes are unique within only a single file system.) This network-

wide uniqueness is required for support of network file systems.  

 

 Figure12.3 view of virtual Files 

The kernel maintains one vnode structure for each active node (file or 

directory). Thus, the VFS distinguishes local files from remote ones, and 

local files are further distinguished according to their file-system types. 

 

Check your Progress 

1. What is a File System? 

2. What is a boot control block? 

3. What is a Volume control block? 

4. What is a directory? 

5. What is a directory structure? 

 

12.4. ANSWERS TO CHECK YOUR PROGRESS 
 

1. A file system or file system (often abbreviated to fs), controls how 

data is stored and retrieved. Without a file system, information 

placed in a storage medium would be one large body of data with 

no way to tell where one piece of information stops and the next 

begins. 

2. A boot control block (per volume) can contain information needed 

by the system to boot an operating system from that volume. If the 

disk does not contain an operating system, this block can be empty. 

It is typically the first block of a volume. In UFS, it is called the 

boot block. In NTFS, it is the partition boot sector. 
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3. A volume control block (per volume) contains volume (or partition) 

details, such as the number of blocks in the partition, the size of the 

blocks, a free-block count and free-block pointers, and a free-FCB 

count and FCB pointers. In UFS, this is called a superblock. In 

NTFS, it is stored in the master file table. 

4. A directory is a file system cataloging structure which contains 

references to other computer files, and possibly other directories. 

On many computers, directories are known as folders, or drawers, 

analogous to a workbench or the traditional office filing cabinet. 

5. The directory structure is the organization of files into a hierarchy 

of folders. Computers have used the folder metaphor for decades as 

a way to help users keep track of where something can be found. 

 

 

12.5.  SUMMARY 
 A disk can access directly any block of information it 

contains. Thus, it is simple to access any file either 

sequentially or randomly, and switching from one file to 

another requires only moving the read–write heads and 

waiting for the disk to rotate. 

 The I/O control level consists of device drivers and interrupt 

handlers to transfer information between the main memory 

and the disk system. 

 The basic file system needs only to issue generic commands 

to the appropriate device driver to read and write physical 

blocks on the disk. 

 A disk can be sliced into multiple partitions, or a volume 

can span multiple partitions on multiple disks. 

 Data structures and procedures are used to isolate the basic 

system call functionality from the implementation details. 

 

12.6. KEYWORDS 
 

 Directory structure: It is used to organize the files. In UFS, this 

includes file names and associated in node numbers. In NTFS, it is 

stored in the master file table. 

 In-memory directory-structure: The cache holds the directory 

information of recently accessed directories. (For directories at 

which volumes are mounted, it can contain a pointer to the volume 

table.) 

 VFS: The VFS is based on a file-representation structure, called a 

vnode, that contains a numerical designator for a network-wide 

unique file. 

 Booting: Boot information is usually a sequential series of blocks, 

loaded as an image into memory. 
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12.7. SELF ASSESSMENT QUESTIONS AND EXERCISES 

Short Answer questions: 

1. What is a disk? 

2. What is the purpose of the disk? 

3. What are partitions? 

4. What is mounting? 

5. What is VFS? 

 

Long Answer questions: 

1. Explain File system structure? 

2. Explain File System Implementation? 
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13.0 INTRODUCTION 

This unit explains the implementation of directories and the methods in 

which means they can be accessed and the free space management 

allocation are illustrated. There is the number of algorithms by using 

which, the directories can be implemented. However, the selection of an 

appropriate directory implementation algorithm may significantly affect 

the performance of the system. The directory implementation algorithms 

are classified according to the data structure they are using. The directories 

path and access method are explained with the different types of allocation 

methods. 

13.1 OBJECTIVE 

This unit covers the following  

 Understand the implementation of directories 

 Learn free space management 

 Study the allocation methods 

13.2 DIRECTORY IMPLEMENTATION 

The selection of directory-allocation and directory-management algorithms 

significantly affects the efficiency, performance, and reliability of the file 

system. In this section, we discuss the trade-offs involved in choosing one 

of these algorithms. 

13.2.1 Linear List 

The simplest method of implementing a directory is to use a linear list of 

file names with pointers to the data blocks. This method is simple to 

program but time-consuming to execute. To create a new file, we must first 

search the directory to be sure that no existing file has the same name. 
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Then, we add a new entry at the end of the directory. To delete a file,we 

search the directory for the named file and then release the space allocated 

to it. To reuse the directory entry, we can do one of several things. We can 

mark the entry as unused (by assigning it a special name, such as an all-

blank name, or by including a used– unused bit in each entry), or we can 

attach it to a list of free directory entries. A third alternative is to copy the 

last entry in the directory into the freed location and to decrease the length 

of the directory. A linked list can also be used to decrease the time required 

to delete a file. 

The real disadvantage of a linear list of directory entries is that finding a 

file requires a linear search. Directory information is used frequently, and 

users will notice if access to it is slow. In fact, many operating systems 

implement a software cache to store the most recently used directory 

information. A cache hit avoids the need to constantly reread the 

information from disk. A sorted list allows a binary search and decreases 

the average search time. However, the requirement that the list be kept 

sorted may complicate creating and deleting files, since we may have to 

move substantial amounts of directory information to maintain a sorted 

directory. A more sophisticated tree data structure, such as a balanced tree, 

might help here. An advantage of the sorted list is that a sorted directory 

listing can be produced without a separate sort step. 

13.2.1 Hash Table 

Another data structure used for a file directory is a hash table. Here, a 

linear list stores the directory entries, but a hash data structure is also used. 

The hash table takes a value computed from the file name and returns a 

pointer to the file name in the linear list. Therefore, it can greatly decrease 

the directory search time. Insertion and deletion are also fairly 

straightforward, although some provision must be made for collisions—

situations in which two file names hash to the same location. The major 

difficulties with a hash table are its generally fixed size and the dependence 

of the hash function on that size. For example, assume that we make a 

linear-probing hash table that holds 64 entries. The hash function converts 

file names into integers from 0 to 63 (for instance, by using the remainder 

of a division by 64). If we later try to create a 65th file, we must enlarge 

the directory hash table—say, to 128 entries. As a result, we need a new 

hash function that must map file names to the range 0 to 127, and we must 

reorganize the existing directory entries to reflect their new hash-function 

values. 

Alternatively, we can use a chained-overflow hash table. Each hash entry 

can be a linked list instead of an individual value, and we can resolve 

collisions by adding the new entry to the linked list. Lookups may be 

somewhat slowed, because searching for a name might require stepping 

through a linked list of colliding table entries. Still, this method is likely to 

be much faster than a linear each through the entire directory. 
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13.3 ALLOCATION METHODS 

The direct-access nature of disks gives us flexibility in the implementation 

of files. In almost every case, many files are stored on the same disk. The 

main problem is how to allocate space to these files so that disk space is 

utilized effectively and files can be accessed quickly. Three major methods 

of allocating disk space are in wide use: contiguous, linked, and indexed. 

Each method has advantages and disadvantages. Although some systems 

support all three, it is more common for a system to use one method for all 

files within a file-system type. 

13.3.1 Contiguous Allocation 

Contiguous allocation requires that each file occupy a set of contiguous 

blocks on the disk. Disk addresses define a linear ordering on the disk. 

With this ordering, assuming that only one job is accessing the disk, 

accessing block b +1 after block b normally requires no head movement. 

When head movement is needed (from the last sector of one cylinder to the 

first sector of the next cylinder), the head need only move from one track 

to the next. Thus, the number of disk seeks required for accessing 

contiguously allocated files is minimal, as is seek time when a seek is 

finally needed. Contiguous allocation of a file is defined by the disk 

address and length (in block units) of the first block. If the file is n blocks 

long and starts at location b, then it occupies blocks b, b + 1, b + 2, ..., b + 

n − 1. The directory entry for each file indicates the address of the starting 

block and the length of the area allocated for this file (Figure 12.5). 

 

Figure 13.1 Contiguous Memory Allocation 

Accessing a file that has been allocated contiguously is easy. For 

sequential access, the file system remembers the disk address of the last 

block referenced and, when necessary, reads the next block. For direct 
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access to block i of a file that starts at block b, we can immediately access 

block b + i. Thus, both sequential and direct access can be supported by 

contiguous allocation. 

 

Figure13.2 Index Allocation 

13.3.2 Linked Allocation 

Linked allocation solves all problems of contiguous allocation. With linked 

allocation, each file is a linked list of disk blocks; the disk blocks may be 

scattered anywhere on the disk. The directory contains a pointer to the first 

and last blocks of the file. For example, a file of five blocks might start at 

block 9 and continue at block 16, then block 1, then block 10, and finally 

block 25 (Figure 12.6). Each block contains a pointer to the next block. 

These pointers 

are not made available to the user. Thus, if each block is 512 bytes in size, 

and a disk address (the pointer) requires 4 bytes, then the user sees blocks 

of 508 bytes. To create a new file, we simply create a new entry in the 

directory. With linked allocation, each directory entry has a pointer to the 

first disk block of the file. This pointer is initialized to null (the end-of-list 

pointer value) to signify an empty file. The size field is also set to 0. A 

write to the file causes the free-space management system to find a free 

block, and this new block is written to and is linked to the end of the file. 

To read a file, we simply read blocks by following the pointers from block 

to block. There is no external fragmentation with linked allocation, and any 

free block on the free-space list can be used to satisfy a request. The size of 

a file need not be declared when the file is created. A file can continue to 

grow as long as free blocks are available. Consequently, it is never 

necessary to compact disk space 
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13.3.3 Indexed Allocation 

Linked allocation solves the external-fragmentation and size-declaration 

problems of contiguous allocation. However, in the absence of a FAT, 

linked allocation cannot support efficient direct access, since the pointers 

to the blocks are scattered with the blocks themselves all over the disk and 

must be retrieved in order. Indexed allocation solves this problem by 

bringing all the pointers together into one location: the index block. Each 

file has its own index block, which is an array of disk-block addresses. The 

ith entry in the index block points to the ith block of the file. The directory 

contains the address of the index block (Figure 12.8). To find and read the 

ith block, we use the pointer in the ith index-block entry. This scheme is 

similar to the paging scheme described in Section 8.5. When the file is 

created, all pointers in the index block are set to null. When the ith block is 

first written, a block is obtained from the free-space manager, and its 

address is put in the ith index-block entry. Indexed allocation supports 

direct access, without suffering from external fragmentation, because any 

free block on the disk can satisfy a request for more space. Indexed 

allocation does suffer from wasted space, however. The pointer overhead 

of the index block is generally greater than the pointer overhead of linked 

allocation. Consider a common case in which we have a file of only one or 

two blocks. With linked allocation, we lose the space of only one pointer 

per block. With indexed allocation, an entire index block must be 

allocated, even if only one or two pointers will be non-null. 

 

Figure 13.3 File Allocation Table 
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13.4 FREE-SPACE MANAGEMENT 

Since disk space is limited, we need to reuse the space from deleted files 

for new files, if possible. (Write-once optical disks allow only one write to 

any given sector, and thus reuse is not physically possible.) To keep track 

of free disk space, the system maintains a free-space list. The free-space 

list records all free disk blocks—those not allocated to some file or 

directory. To create a file, we search the free-space list for the required 

amount of space and allocate that space to the new file. This space is then 

removed from the free-space list. When a file is deleted, its disk space is 

added to the free-space list. The free-space list, despite its name, may not 

be implemented as a list, as we discuss next. 

13.4.1 Bit Vector 

Frequently, the free-space list is implemented as a bit map or bit vector. 

Each block is represented by 1 bit. If the block is free, the bit is 1; if the 

block is allocated, the bit is 0. For example, consider a disk where blocks 

2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 are free and the rest of 

the blocks are allocated. The free-space bit map would be 

001111001111110001100000011100000 ... 

The main advantage of this approach is its relative simplicity and its 

efficiency in finding the first free block or n consecutive free blocks on the 

disk. Indeed, many computers supply bit-manipulation instructions that can 

be used effectively for that purpose. One technique for finding the first free 

block on a system that uses a bit-vector to allocate disk space is to 

sequentially check each word in the bit map to see whether that value is not 

0, since a 562 0-valued word contains only 0 bits and represents a set of 

allocated blocks. The first non-0 word is scanned for the first 1 bit, which 

is the location of the first free block. The calculation of the block number 

is(number of bits per word) × (number of 0-value words) + offset of first 1 

bit. 

Again, we see hardware features driving software functionality. 

Unfortunately, bit vectors are inefficient unless the entire vector is kept in 

main memory (and is written to disk occasionally for recovery needs). 

Keeping it in main memory is possible for smaller disks but not necessarily 

for larger ones. A 1.3-GB disk with 512-byte blocks would need a bit map 

of over 332 KB to track its free blocks, although clustering the blocks in 

groups of four reduces this number to around 83 KB per disk. A1-TB disk 

with 4-KB blocks requires 256 MB to store its bit map. Given that disk 

size constantly increases, the problem with bit vectors will continue to 

escalate as well. 

13.4.2 Linked List 

Another approach to free-space management is to link together all the free 

disk blocks, keeping a pointer to the first free block in a special location on 

the disk and caching it in memory. This first block contains a pointer to the 

next free disk block, and so on. Recall our earlier example (Section 
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12.5.1), in which blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 

27 were free and the rest of the blocks were allocated. In this situation, we 

would keep a pointer to block 2 as the first free block. Block 2 would 

contain a pointer to block 3, which would point to block 4, which would 

point to block 5, which would point to block 8, and so on (Figure 12.10). 

This scheme is not efficient; to traverse the list, we must read each block, 

which requires substantial I/O time. Fortunately, however, traversing the 

free list is not a frequent action. Usually, the operating system simply 

needs a free block so that it can allocate that block to a file, so the first 

block in the free list is used. The FAT method incorporates free-block 

accounting into the allocation data structure. No separate method is 

needed. 

13.4.3 Grouping 

A modification of the free-list approach stores the addresses of n free 

blocks in the first free block. The first n−1 of these blocks are actually free. 

The last block contains the addresses of another n free blocks, and so on. 

The addresses of a large number of free blocks can now be found quickly, 

unlike the situation when the standard linked-list approach is used. 

13.4.4 Counting 

Another approach takes advantage of the fact that, generally, several 

contiguous blocks may be allocated or freed simultaneously, particularly 

when space is allocated with the contiguous-allocation algorithm or 

through clustering. Thus, rather than keeping a list of n free disk addresses, 

we can keep the address of the first free block and the number (n) of free 

contiguous blocks that follow the first block. Each entry in the free-space 

list then consists of a disk address and a count. Although each entry 

requires more space than would a simple disk address, the overall list is 

shorter, as long as the count is generally greater than 1. Note that this 

method of tracking free space is similar to the extent method of allocating 

blocks. These entries can be stored in a balanced tree, rather than a linked 

list, for efficient lookup, insertion, and deletion. 
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Figure13.4 Linked Free space 

13.4.5 Space Maps 

Oracle’s ZFS file system (found in Solaris and other operating systems) 

was designed to encompass huge numbers of files, directories, and even 

file systems (in ZFS, we can create file-system hierarchies). On these 

scales, metadata I/O can have a large performance impact. Consider, for 

example, that if the free-space list is implemented as a bit map, bit maps 

must be modified both when blocks are allocated and when they are freed. 

Freeing 1 GB of data on a 1-TB disk could cause thousands of blocks of bit 

maps to be updated, because those data blocks could be scattered over the 

entire disk. Clearly, the data structures for such a system could be large 

and inefficient. 

In its management of free space, ZFS uses a combination of techniques to 

control the size of data structures and minimize the I/O needed to manage 

those structures. First, ZFS creates metaslabs to divide the space on the 

device into chunks of manageable size. A given volume may contain 

hundreds of metaslabs. Each metaslab has an associated space map. ZFS 

uses the counting algorithm to store information about free blocks. Rather 

than write counting structures to disk, it uses log-structured file-system 

techniques to record them. The space map is a log of all block activity 

(allocating and freeing), in time order, in counting format. When ZFS 
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decides to allocate or free space from a metaslab, it loads the associated 

space map into memory in a balanced-tree structure (for very efficient 

operation), indexed by offset, and replays the log into that structure. The 

in-memory spacemap is then an accurate representation of the allocated 

and free space in the metaslab. ZFS also condenses the map as much as 

possible by combining contiguous free blocks into a single entry. 

Finally, the free-space list is updated on disk as part of the transaction-

oriented operations of ZFS. During the collection and sorting phase, block 

requests can still occur, and ZFS satisfies these requests from the log. In 

essence, the log plus the balanced tree is the free list. 

 

Check your Progress 

1. What is a bit vector? 

2. What is Grouping? 

3. What is Space Maps? 

4. Name the Allocation methods? 

5. What is Hash table? 

 

13.5. ANSWERS TO CHECK YOUR PROGRESS 

 

1. A bit vector is a vector in which each element is a bit (so its value 

is either 0 or 1). In most vectors, each element has a different 

address in memory and can be manipulated separately from the 

other elements, but we also hope to be able to perform ―vector 

operations‖ that treat all elements uniformly. 

2. A modification of the free-list approach stores the addresses of n 

free blocks in the first free block. The first n−1 of these blocks are 

actually free. The last block contains the addresses of another n free 

blocks, and so on. 

3. Oracle’s ZFS file system (found in Solaris and other operating 

systems) was designed to encompass huge numbers of files, 

directories, and even file systems (in ZFS, we can create file-

system hierarchies). 

4. Contiguous Allocation, Linked Allocation and Indexed Allocation. 

5. A hash table (hash map) is a data structure that implements an 

associative array abstract data type, a structure that can map keys to 

values. A hash table uses a hash function to compute an index into 

an array of buckets or slots, from which the desired value can be 

found. 

 

13.6. SUMMARY 

 The simplest method of implementing a directory is to use a 

linear list of file names with pointers to the data blocks.  

 Three major methods of allocating disk space are in wide use: 

contiguous, linked, and indexed.   
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  Contiguous allocation requires that each file occupy a set of 

contiguous blocks on the disk. 

 Linked allocation solves all problems of contiguous allocation. 

With linked allocation, each file is a linked list of disk blocks; the 

disk blocks may be scattered anywhere on the disk. 

  Since disk space is limited, we need to reuse the space from 

deleted files for new files, if possible. 

 For sequential access, the file system remembers the disk address of 

the last block referenced and, when necessary, reads the next block. 

13.7. KEYWORDS 

 ZFS: ZFS uses a combination of techniques to control the size of 

data structures and minimize the I/O needed to manage those 

structures.  

 Linked list: Another approach to free-space management is to link 

together all the free disk blocks, keeping a pointer to the first free 

block in a special location on the disk and caching it in memory. 

 Linked allocation: Linked allocation solves all problems of 

contiguous allocation. With linked allocation, each file is a linked 

list of disk blocks; the disk blocks may be scattered anywhere on 

the disk. 

13.8. SELF ASSESSMENT QUESTIONS AND 

EXERCISES 

 

Short Answer questions: 

1. What is Linear List? 

2. What is Contiguous Allocation? 

3. What is Linked Allocation? 

4. What is Indexed Allocation? 

5. What is Linked List? 

Long Answer questions: 

1. Explain free space management? 

2. Explain Allocation methods? 

3. Explain Directory Implementation? 
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 UNIT XIV 

SECONDARY STORAGE STRUCTURE 
 

Structure  
14.0Introduction 

14.1Objective 

14.2 Overview of Mass-Storage Structure 

14.3 Disk Structure 

14.4 Disk Attachment 

14.5 Overview of Mass-Storage Structure-Disk Attachment-Disk 

Scheduling-Disk Management       

14.6 Disk Management 

14.7 Answers to Check Your Progress Questions 

14.8 Summary 

14.9 Key Words 

14.10 Self Assessment Questions and Exercises 

14.11 Further Readings  

 

14.0 INTRODUCTION 

 

The storage structure helps to store the data from the Operating System to 

the system. There are many storage devices; this unit covers the secondary 

storage structure on how the data is stored and retrieved. As we know, a 

process needs two types of time, CPU time and IO time. For I/O, it 

requests the Operating system to access the disk. However, the operating 

system must be fair enough to satisfy each request and at the same time, 

operating system must maintain the efficiency and speed of process 

execution. The technique that operating system uses to determine the 

request which is to be satisfied next is called disk scheduling. The disk 

scheduling and disk management on the devices are explored. 

14.1 OBJECTIVE 

This unit helps the user to learn and understand the 

 Disk Scheduling 

 Disk Management 

 Overview of storage structures 

14.2 OVERVIEW OF MASS-STORAGE STRUCTURE 

In this section, we present a general overview of the physical structure of 

secondary and tertiary storage devices. 
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14.2.1 Magnetic Disks 

Magnetic disks provide the bulk of secondary storage for modern computer 

systems. Conceptually, disks are relatively simple. Each disk platter has a 

flat circular shape, like a CD. Common platter diameters range from 1.8 to 

3.5 inches. The two surfaces of a platter are covered with a magnetic 

material. We store information by recording it magnetically on the platters. 

A read–write head ―flies‖ just above each surface of every platter. The 

heads are attached to a disk arm that moves all the heads as a unit. The 

surface of a platter is logically divided into circular tracks, which are 

subdivided into sectors. The set of tracks that are at one arm position 

makes up a cylinder. There may be thousands of concentric cylinders in a 

disk drive, and each track may contain hundreds of sectors. The storage 

capacity of common disk drives is measured in gigabytes. 

When the disk is in use, a drive motor spins it at high speed. Most drives 

rotate 60 to 250 times per second, specified in terms of rotations per 

minute (RPM). Common drives spin at 5,400, 7,200, 10,000, and 15,000 

RPM. Disk speed has two parts. The transfer rate is the rate at which data 

flow between the drive and the computer. The positioning time, or random-

access time, consists of two parts: the time necessary to move the disk arm 

to the desired cylinder, called the seek time, and the time necessary for the 

desired sector to rotate to the disk head, called the rotational latency. 

Typical disks can transfer several megabytes of data per second, and they 

have seek times and rotational latencies of several milliseconds. 

Because the disk head flies on an extremely thin cushion of air (measured 

in microns), there is a danger that the head will make contact with the disk 

surface. Although the disk platters are coated with a thin protective layer, 

the head will sometimes damage the magnetic surface. This accident is 

called a head crash. A head crash normally cannot be repaired; the entire 

disk must be replaced. A disk can be removable, allowing different disks to 

be mounted as needed. Removable magnetic disks generally consist of one 

platter, held in a plastic case to prevent damage while not in the disk drive. 

Other forms of removable disks include CDs, DVDs, and Blu-ray discs as 

well as removable flash-memory devices known as flash drives (which are 

a type of solid-state drive).  

A disk drive is attached to a computer by a set of wires called an I/O bus. 

Several kinds of buses are available, including advanced technology 

attachment (ATA), serial ATA (SATA), eSATA, universal serial bus 

(USB), and fibre channel (FC). The data transfers on a bus are carried out 

by special electronic processors called controllers. The host controller is 

the controller at the computer end of the bus. The host controller then 

sends the command via messages to the disk controller, and the disk 

controller operates the disk-drive hardware to carry out the command. Disk 

controllers usually have a built-in cache. Data transfer at the disk drive 

happens between the cache and the disk surface, and data transfer to the 

host, at fast electronic speeds, occurs between the cache and the host 

controller. 
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14.2.2 Solid-State Disks 

Sometimes old technologies are used in new ways as economics change or 

the technologies evolve. An example is the growing importance of solid-

state disks, or SSDs. Simply described, an SSD is nonvolatile memory that 

is used like a hard drive. There are many variations of this technology, 

from DRAM with a battery to allow it to maintain its state in a power 

failure through flash-memory technologies like single-level cell (SLC) and 

multilevel cell (MLC) chips. 

SSDs have the same characteristics as traditional hard disks but can be 

more reliable because they have no moving parts and faster because they 

have no seek time or latency. In addition, they consume less power. 

However, they are more expensive per megabyte than traditional hard 

disks, have less capacity than the larger hard disks, and may have shorter 

life spans than hard disks, so their uses are somewhat limited. One use for 

SSDs is in storage arrays, where they hold file-system metadata that 

require high performance. SSDs are also used in some laptop computers to 

make them smaller, faster, and more energy-efficient. 

Because SSDs can be much faster than magnetic disk drives, standard bus 

interfaces can cause a major limit on throughput. Some SSDs are designed 

to connect directly to the system bus (PCI, for example). SSDs are 

changing other traditional aspects of computer design as well. Some 

systems use them as a direct replacement for disk drives, while others use 

them as a new cache tier, moving data between magnetic disks, SSDs, and 

memory to optimize performance. 

In the remainder of this chapter, some sections pertain to SSDs, while 

others do not. For example, because SSDs have no disk head, disk-

scheduling algorithms largely do not apply. Throughput and formatting, 

however, do apply. 

14.2.3 Magnetic Tapes 

Magnetic tape was used as an early secondary-storage medium. Although 

it is relatively permanent and can hold large quantities of data, its access 

time is slow compared with that of main memory and magnetic disk. In 

addition, random access to magnetic tape is about a thousand times slower 

than random access to magnetic disk, so tapes are not very useful for 

secondary storage. 

14.2.4 Disk Transfer Rates 

As with many aspects of computing, published performance numbers for 

disks are not the same as real-world performance numbers. Stated transfer 

rates are always lower than effective transfer rates, for example. The 

transfer rate may be the rate at which bits can be read from the magnetic 

media by the disk head, but that is different from the rate at which blocks 

are delivered to the operating system. 
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Tapes are used mainly for backup, for storage of infrequently used 

information, and as a medium for transferring information from one system 

to another. A tape is kept in a spool and is wound or rewound past a read–

write head. Moving to the correct spot on a tape can take minutes, but once 

positioned, tape drives can write data at speeds comparable to disk drives. 

Tape capacities vary greatly, depending on the particular kind of tape 

drive, with current capacities exceeding several terabytes. Some tapes have 

built-in compression that can more than double the effective storage. Tapes 

and their drivers are usually categorized by width, including 4, 8, and 19 

millimeters and 1/4 and 1/2 inch. Some are named according to 

technology, such as LTO-5 and SDLT. 

 

 

 

Figure 14.1 Moving of Magnetic Tapes 

14.3 DISK STRUCTURE 

odern magnetic disk drives are addressed as large one-dimensional arrays 

of logical blocks, where the logical block is the smallest unit of transfer. 

The size of a logical block is usually 512 bytes, although some disks can 

be low-level formatted to have a different logical block size, such as 1,024 

bytes. This option is described in Section 10.5.1. The one-dimensional 

array of logical blocks is mapped onto the sectors of the disk sequentially. 

Sector 0 is the first sector of the first track on the outermost cylinder. The 

mapping proceeds in order through that track, then through the rest of the 
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tracks in that cylinder, and then through the rest of the cylinders from 

outermost to innermost. 

By using this mapping, we can—at least in theory—convert a logical block 

number into an old-style disk address that consists of a cylinder number, a 

track number within that cylinder, and a sector number within that track. In 

practice, it is difficult to perform this translation, for two reasons. First, 

most disks have some defective sectors, but the mapping hides this by 

substituting spare sectors from elsewhere on the disk. Second, the number 

of sectors per track is not a constant on some drives. Let’s look more 

closely at the second reason. On media that use constant linear velocity 

(CLV), the density of bits per track is uniform. The farther a track is from 

the center of the disk, the greater its length, so the more sectors it can hold. 

As we move from outer zones to inner zones, the number of sectors per 

track decreases. Tracks in the outermost zone typically hold 40 percent 

more sectors than do tracks in the innermost zone. The drive increases its 

rotation speed as the head moves from the outer to the inner tracks to keep 

the same rate of data moving under the head. This method is used in CD-

ROM and DVD-ROM drives. Alternatively, the disk rotation speed can 

stay constant; in this case, the density of bits decreases from inner tracks to 

outer tracks to keep the data rate constant. This method is used in hard 

disks and is known as constant angular velocity (CAV). 

The number of sectors per track has been increasing as disk technology 

improves, and the outer zone of a disk usually has several hundred sectors 

per track. Similarly, the number of cylinders per disk has been increasing; 

large disks have tens of thousands of cylinders. 

14.4 DISK ATTACHMENT 

Computers access disk storage in two ways. One way is via I/O ports (or 

host-attached storage); this is common on small systems. The other way is 

via a remote host in a distributed file system; this is referred to as network-

attached storage. 

14.4.1 Host-Attached Storage 

Host-attached storage is storage accessed through local I/O ports. These 

ports use several technologies. The typical desktop PC uses an I/O bus 

architecture called IDE or ATA. This architecture supports a maximum of 

two drives per I/O bus. A newer, similar protocol that has simplified 

cabling is SATA. High-end workstations and servers generally use more 

sophisticated I/O architectures such as fibre channel (FC), a high-speed 

serial architecture that can operate over optical fiber or over a four-

conductor copper cable. It has two variants. One is a large switched fabric 

having a 24-bit address space. This variant is expected to dominate in the 

future and is the basis of storage-area networks (SANs), discussed in 

Section 10.3.3. Because of the large address space and the switched nature 

of the communication, multiple hosts and storage devices can attach to the 

fabric, allowing great flexibility in I/O communication. 
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The other FC variant is an arbitrated loop (FC-AL) that can address 126 

devices (drives and controllers). A wide variety of storage devices are 

suitable for use as host-attached storage. Among these are hard disk drives, 

RAID arrays, and CD, DVD, and tape drives. The I/O commands that 

initiate data transfers to a host-attached storage device are reads and writes 

of logical data blocks directed to specifically identified storage units (such 

as bus ID or target logical unit). 

14.4.2 Network-Attached Storage 

A network-attached storage (NAS) device is a special-purpose storage 

system that is accessed remotely over a data network (Figure 10.2). Clients 

access network-attached storage via a remote-procedure-call interface such 

as NFS for UNIX systems or CIFS for Windows machines. The remote 

procedure calls(RPCs) are carried via TCP or UDP over an IP network—

usually the same local area network (LAN) that carries all data traffic to 

the clients. Thus, it may be easiest to think of NAS as simply another 

storage-access protocol. The network attached storage unit is usually 

implemented as a RAID array with software that implements the RPC 

interface. 

Network-attached storage provides a convenient way for all the computers 

on a LAN to share a pool of storage with the same ease of naming and 

access enjoyed with local host-attached storage. However, it tends to be 

less efficient and have lower performance than some direct-attached 

storage options. iSCSI is the latest network-attached storage protocol. In 

essence, it uses the IP network protocol to carry the SCSI protocol. Thus, 

networks—rather than SCSI cables—can be used as the interconnects 

between hosts and their storage. As a result, hosts can treat their storage as 

if it were directly attached, even if the storage is distant from the host. 

14.4.3 Storage-Area Network 

One drawback of network-attached storage systems is that the storage I/O 

operations consume bandwidth on the data network, thereby increasing the 

latency of network communication. This problem can be particularly acute 

in large client–server installations—the communication between servers 

and clients competes for bandwidth with the communication among 

servers and storage devices. 

A storage-area network (SAN) is a private network (using storage 

protocols rather than networking protocols) connecting servers and storage 

units, as shown in Figure 10.3. The power of a SAN lies in its flexibility. 

Multiple hosts and multiple storage arrays can attach to the same SAN, and 

storage can be dynamically allocated to hosts. A SAN switch allows or 

prohibits access between the hosts and the storage. As one example, if a 

host is running low on disk space, the SAN can be configured to allocate 

more storage to that host. SANs make it possible for clusters of servers to 

share the same storage and for storage arrays to include multiple direct host 

connections. SANs typically have more ports—as well as more expensive 

ports—than storage arrays. FC is the most common SAN interconnect, 
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although the simplicity of iSCSI is increasing its use. Another SAN 

interconnect is InfiniBand — a special-purpose bus architecture that 

provides hardware and software support for high-speed interconnection 

networks for servers and storage units. 

14.5 DISK SCHEDULING 

One of the responsibilities of the operating system is to use the hardware 

efficiently. For the disk drives, meeting this responsibility entails having 

fast access time and large disk bandwidth. For magnetic disks, the access 

time has two major components, as mentioned in Section 10.1.1. The seek 

time is the time for the disk arm to move the heads to the cylinder 

containing the desired sector. The rotational latency is the additional time 

for the disk to rotate the desired sector to the disk head. The disk 

bandwidth is the total number of bytes transferred, divided by the total 

time between the first request for service and the completion of the last 

transfer. We can improve both the access time and the bandwidth by 

managing the order in which disk I/O requests are serviced. 

Whenever a process needs I/O to or from the disk, it issues a system call to 

the operating system. The request specifies several pieces of information: 

 

• Whether this operation is input or output 

• What the disk address for the transfer is 

• What the memory address for the transfer is 

• What the number of sectors to be transferred is 

 

Figure 14.2 Storage Area Network 

If the desired disk drive and controller are available, the request can be 

serviced immediately. If the drive or controller is busy, any new requests 
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for service will be placed in the queue of pending requests for that drive. 

For a multiprogramming system with many processes, the disk queue may 

often have several pending requests. Thus, when one request is completed, 

the operating system chooses which pending request to service next. How 

does the operating system make this choice? Any one of several disk-

scheduling algorithms can be used, and we discuss them next. 

14.5.1 FCFS Scheduling 

The simplest form of disk scheduling is, of course, the first-come, first-

served (FCFS) algorithm. This algorithm is intrinsically fair, but it 

generally does not provide the fastest service. Consider, for example, a 

disk queue with requests for I/O to blocks on cylinders98, 183, 37, 122, 14, 

124, 65, 67, in that order. If the disk head is initially at cylinder 53, it will 

first move from 53 to 98, then to 183, 37, 122, 14, 124, 65, and finally to 

67, for a total head movement of 640 cylinders. This schedule is 

diagrammed in Figure 10.4. The wild swing from 122 to 14 and then back 

to 124 illustrates the problem with this schedule. If the requests for 

cylinders 37 and 14 could be serviced together, before or after the requests 

for 122 and 124, the total head movement could be decreased substantially, 

and performance could be thereby improved. 

 

Figure14.3 FCFS Disk Scheduling 

14.5.2 SSTF Scheduling 

It seems reasonable to service all the requests close to the current head 

position before moving the head far away to service other requests. This 

assumption is the basis for the shortest-seek-time-first (SSTF) algorithm. 

The SSTF algorithm selects the request with the least seek time from the 

current head position. In other words, SSTF chooses the pending request 

closest to the current head position. 
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Figure14.4 SSTF Scheduling 

For our example request queue, the closest request to the initial head 

position (53) is at cylinder 65. Once we are at cylinder 65, the next closest 

request is at cylinder 67. From there, the request at cylinder 37 is closer 

than the one at 98, so 37 is served next. Continuing, we service the request 

at cylinder 14, then 98, 122, 124, and finally 183 (Figure 10.5). This 

scheduling method results in a total head movement of only 236 

cylinders—little more than one-third of the distance needed for FCFS 

scheduling of this request queue. Clearly, this algorithm gives a substantial 

improvement in performance. 

SSTF scheduling is essentially a form of shortest-job-first (SJF) 

scheduling; and like SJF scheduling, it may cause starvation of some 

requests. Remember that requests may arrive at any time. Suppose that we 

have two requests in the queue, for cylinders 14 and 186, and while the 

request from 14 is being serviced, a new request near 14 arrives. This new 

request will be serviced next, making the request at 186 wait. While this 

request is being serviced, another request close to 14 could arrive. In 

theory, a continual stream of requests near one another could cause the 

request for cylinder 186 to wait indefinitely. This scenario becomes 

increasingly likely as the pending-request queue grows longer. Although 

the SSTF algorithm is a substantial improvement over the FCFS algorithm, 

it is not optimal. In the example, we can do better by moving the head from 

53 to 37, even though the latter is not closest, and then to 14, before 

turning around to service 65, 67, 98, 122, 124, and 183. This strategy 

reduces the total head movement to 208 cylinders. 

14.5.3 SCAN Scheduling 

In the SCAN algorithm, the disk arm starts at one end of the disk and 

moves toward the other end, servicing requests as it reaches each cylinder, 

until it gets to the other end of the disk. At the other end, the direction of 

head movement is reversed, and servicing continues. The head 
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continuously scans back and forth across the disk. The SCAN algorithm is 

sometimes called the elevator algorithm, since the disk arm behaves just 

like an elevator in a building, first servicing all the requests going up and 

then reversing to service requests the other way. 

 

 Figure 14.5 SCAN Scheduling 

Let’s return to our example to illustrate. Before applying SCAN to 

schedule the requests on cylinders 98, 183, 37, 122, 14, 124, 65, and 67, 

we need to know the direction of head movement in addition to the head’s 

current position. Assuming that the disk arm is moving toward 0 and that 

the initial head position is again 53, the head will next service 37 and then 

14. At cylinder 0, the arm will reverse and will move toward the other end 

of the disk, servicing the requests at 65, 67, 98, 122, 124, and 183 (Figure 

10.6). If a request arrives in the queue just in front of the head, it will be 

serviced almost immediately; a request arriving just behind the head will 

have to wait until the arm moves to the end of the disk, reverses direction, 

and comes back. Assuming a uniform distribution of requests for cylinders, 

consider the density of requests when the head reaches one end and 

reverses direction. At this point, relatively few requests are immediately in 

front of the head, since these cylinders have recently been serviced. The 

heaviest density of is at the other end of the disk. These requests have also 

waited the longest, so why not go there first? That is the idea of the next 

algorithm.  

14.5.4 C-SCAN Scheduling 

Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to 

provide a more uniform wait time. Like SCAN, C-SCAN moves the head 

from one end of the disk to the other, servicing requests along the way. 

When the head reaches the other end, however, it immediately returns to 

the beginning of the disk without servicing any requests on the return trip 
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(Figure 10.7). The C-SCAN scheduling algorithm essentially treats the 

cylinders as a circular list that wraps around from the final cylinder to the 

first one. 

0 14 37 53 65 67 98 122124 183199 

queue = 98, 183, 37, 122, 14, 124, 

 

Figure 14.6 C-LOOK Scheduling 

 

 

Figure 14.7C SCAN Scheduling 
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14.5.5 LOOK Scheduling 

As we described them, both SCAN and C-SCAN move the disk arm across 

the full width of the disk. In practice, neither algorithm is often 

implemented this way. More commonly, the arm goes only as far as the 

final request in each direction. Then, it reverses direction immediately, 

without going all the way to the end of the disk. Versions of SCAN and C-

SCAN that follow this pattern are called LOOK and C-LOOK scheduling, 

because they look for a request before continuing to move in a given 

direction (Figure 10.8). 

14.5.6 Selection of a Disk-Scheduling Algorithm 

Given so many disk-scheduling algorithms, how do we choose the best 

one? SSTF is common and has a natural appeal because it increases 

performance over FCFS. SCAN and C-SCAN perform better for systems 

that place a heavy load on the disk, because they are less likely to cause a 

starvation problem. For any particular list of requests, we can define an 

optimal order of retrieval, but the computation needed to find an optimal 

schedule may not justify the savings over SSTF or SCAN. With any 

scheduling algorithm, however, performance depends heavily on the 

number and types of requests. For instance, suppose that the queue usually 

has just one outstanding request. Then, all scheduling algorithms behave 

the same, because they have only one choice of where to move the disk 

head: they all behave like FCFS scheduling. 

Requests for disk service can be greatly influenced by the file-allocation 

method. A program reading a contiguously allocated file will generate 

several requests that are close together on the disk, resulting in limited 

head movement. A linked or indexed file, in contrast, may include blocks 

that are widely scattered on the disk, resulting in greater head movement. 

The location of directories and index blocks is also important. Since every 

file must be opened to be used, and opening a file requires searching the 

directory structure, the directories will be accessed frequently. Suppose 

that a directory entry is on the first cylinder and a file’s data are on the 

final cylinder. In this case, the disk head has to move the entire width of 

the disk. If the directory  

14.6 DISK MANAGEMENT 

The operating system is responsible for several other aspects of disk 

management, too. Here we discuss disk initialization, booting from disk, 

and bad-block recovery. 

14.6.1 DISK FORMATTING 

A new magnetic disk is a blank slate: it is just a platter of a magnetic 

recording material. Before a disk can store data, it must be divided into 

sectors that the disk controller can read and write. This process is called 

low-level formatting, or physical formatting. Low-level formatting fills the 

disk with a special data structure for each sector. The data structure for a 
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sector typically consists of a header, a data area (usually 512 bytes in size), 

and a trailer. The header and trailer contain information used by the disk 

controller, such as a sector number and an error-correcting code (ECC). 

When the controller writes a sector of data during normal I/O, the ECC is 

updated with a value calculated from all the bytes in the data area. When 

the sector is read, the ECC is recalculated and compared with the stored 

value. If the stored and calculated numbers are different, this mismatch 

indicates that the data area of the sector has become corrupted and that the 

disk sector may be bad (Section 10.5.3). The ECC is an error-correcting 

code because it contains enough information, if only a few bits of data 

have been corrupted, to enable the controller to identify which bits have 

changed and calculate what their correct values should be. It then reports a 

recoverable soft error. The controller automatically does the ECC 

processing whenever a sector is read or written. 

Most hard disks are low-level-formatted at the factory as a part of the 

manufacturing process. This formatting enables the manufacturer to test 

the disk and to initialize the mapping from logical block numbers to defect-

free sectors on the disk. For many hard disks, when the disk controller is 

instructed to low-level-format the disk, it can also be told how many bytes 

of data space to leave between the header and trailer of all sectors. It is 

usually possible to choose among a few sizes, such as 256, 512, and 1,024 

bytes. Formatting a disk with a larger sector size means that fewer sectors 

can fit on each track; but it also means that fewer headers and trailers are 

written on each track and more space is available for user data. Some 

operating systems can handle only a sector size of 512 bytes. 

Before it can use a disk to hold files, the operating system still needs to 

record its own data structures on the disk. It does so in two steps. The first 

step is to partition the disk into one or more groups of cylinders. The 

operating system can treat each partition as though it were a separate disk. 

For instance, one partition can hold a copy of the operating system’s 

executable code, while another holds user files. The second step is logical 

formatting, or creation of a file system. In this step, the operating system 

stores the initial file-system data structures onto the disk. These data 

structures may include maps of free and allocated space and an initial 

empty directory. 

To increase efficiency, most file systems group blocks together into larger 

chunks, frequently called clusters. Disk I/O is done via blocks, but file 

system I/O is done via clusters, effectively assuring that I/O has more 

sequential-access and fewer random-access characteristics. Some operating 

systems give special programs the ability to use a disk partition as a large 

sequential array of logical blocks, without any file-system data structures. 

This array is sometimes called the raw disk, and I/O to this array is termed 

raw I/O. For example, some database systems prefer raw I/O because it 

enables them to control the exact disk location where each database record 

is stored. Raw I/O bypasses all the file-system services, such as the buffer 

cache, file locking, prefetching, space allocation, file names, and 

directories. We can make certain applications more efficient by allowing 
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them to implement their own special-purpose storage services on a raw 

partition, but most applications perform better when they use the regular 

file-system services. 

14.6.2 Boot Block 

For a computer to start running—for instance, when it is powered up or 

rebooted—it must have an initial program to run. This initial bootstrap 

program tends to be simple. It initializes all aspects of the system, from 

CPU registers to device controllers and the contents of main memory, and 

then starts the operating system. To do its job, the bootstrap program finds 

the operating-system kernel on disk, loads that kernel into memory, and 

jumps to an initial address to begin the operating-system execution. 

For most computers, the bootstrap is stored in read-only memory (ROM). 

This location is convenient, because ROM needs no initialization and is at 

a fixed location that the processor can start executing when powered up or 

reset. And, since ROM is read only, it cannot be infected by a computer 

virus. The problem is that changing this bootstrap code requires changing 

the ROM hardware chips. For this reason, most systems store a tiny 

bootstrap loader program in the boot ROM whose only job is to bring in a 

full bootstrap program from disk. The full bootstrap program can be 

changed easily: a new version is simply written onto the disk. The full 

bootstrap program is stored in the ―boot blocks‖ at a fixed location on the 

disk. A disk that has a boot partition is called a boot disk or system disk. 

The code in the boot ROM instructs the disk controller to read the boot 

blocks into memory (no device drivers are loaded at this point) and then 

starts executing that code. The full bootstrap program is more sophisticated 

than the bootstrap loader in the boot ROM. It is able to load the entire 

operating system from a non-fixed location on disk and to start the 

operating system running. Even so, the full bootstrap code may be small. 

Let’s consider as an example the boot process in Windows. First, note that 

Windows allows a hard disk to be divided into partitions, and one partition 

—identified as the boot partition—contains the operating system and 

device drivers. The Windows system places its boot code in the first sector 

on the hard disk, which it terms the master boot record, or MBR. Booting 

begins by running code that is resident in the system’s ROM memory. This 

code directs the system to read the boot code from the MBR. In addition to 

containing boot code, the MBR contains a table listing the partitions for the 

hard disk and a flag indicating which partition the system is to be booted 

from, as illustrated in Figure 10.9. Once the system identifies the boot 

partition, it reads the first sector from that partition (which is called the 

boot sector) and continues with the remainder of the boot process, which 

includes loading the various subsystems and system services. 

14.6.3 Bad Blocks 

Because disks have moving parts and small tolerances (recall that the disk 

head flies just above the disk surface), they are prone to failure. Sometimes 

the failure is complete; in this case, the disk needs to be replaced and its 
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contents restored from backup media to the new disk. More frequently, one 

or more sectors become defective. Most disks even come from the factory 

with bad blocks. Depending on the disk and controller in use, these blocks 

are handled in a variety of ways.  

On simple disks, such as some disks with IDE controllers, bad blocks are 

handled manually. One strategy is to scan the disk to find bad blocks while 

the disk is being formatted. Any bad blocks that are discovered are flagged 

as unusable so that the file system does not allocate them. If blocks go bad 

during normal operation, a special program (such as the Linux bad blocks 

command) must be run manually to search for the bad blocks and to lock 

them away. Data that resided on the bad blocks usually are lost. More 

sophisticated disks are smarter about bad-block recovery. The controller 

maintains a list of bad blocks on the disk. The list is initialized during the 

low-level formatting at the factory and is updated over the life of the disk. 

Low-level formatting also sets aside spare sectors not visible to the 

operating system. The controller can be told to replace each bad sector 

logically with one of the spare sectors. This scheme is known as sector 

sparing or forwarding. A typical bad-sector transaction might be as 

follows: 

• The operating system tries to read logical block 87. 

• The controller calculates the ECC and finds that the sector is bad. It 

reports this finding to the operating system. 

• The next time the system is rebooted, a special command is run to tell the 

controller to replace the bad sector with a spare. 

• After that, whenever the system requests logical block 87, the request is 

translated into the replacement sector’s address by the controller. 

 

Figure 14.8 Booting from disks 

Note that such a redirection by the controller could invalidate any 

optimization by the operating system’s disk-scheduling algorithm! For this 

reason, most disks are formatted to provide a few spare sectors in each 
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cylinder and a spare cylinder as well. When a bad block is remapped, the 

controller uses a spare sector from the same cylinder, if possible. 

As an alternative to sector sparing, some controllers can be instructed to 

replace a bad block by sector slipping. Here is an example: Suppose that 

logical block 17 becomes defective and the first available spare follows 

sector 202. Sector slipping then remaps all the sectors from 17 to 202, 

moving them all down one spot. That is, sector 202 is copied into the 

spare, then sector 201 into 202, then 200 into 201, and so on, until sector 

18 is copied into sector 19. 

Slipping the sectors in this way frees up the space of sector 18 so that 

sector 17 can be mapped to it. The replacement of a bad block generally is 

not totally automatic, because the data in the bad block are usually lost. 

Soft errors may trigger a process in which a copy of the block data is made 

and the block is spared or slipped. An unrecoverable hard error, however, 

results in lost data. Whatever file was using that block must be repaired  

(for instance, by restoration from a backup tape), and that requires manual 

intervention. 

Check your Progress 

1. What does Solid State Drive (SSD) mean? 

2. What is a Magnetic Tape? 

3. What is a Host-Attached Storage? 

4. What is a Network-attached storage? 

5. What is a Storage Area Network? 

 

 

14.7. ANSWERS TO CHECK YOUR PROGRESS 
 

1. A solid state drive (SSD) is an electronic storage drive built on 

solid state architecture. SSDs are built with NAND and NOR flash 

memory to store non-volatile data and dynamic random access 

memory (DRAM). A SSD and magnetic hard disk drive (HDD) 

share a similar purpose. 

2. Magnetic tape is a medium for magnetic recording, made of a thin, 

magnetizable coating on a long, narrow strip of plastic film. It was 

developed in Germany in 1928, based on magnetic wire recording. 

3. Host-attached storage is storage accessed through local I/O ports. 

a. The typical desktop PC uses an I/O bus architecture called 

IDE or ATA. This architecture supports a maximum of two 

drives per I/O bus. 

b. A newer, similar protocol that has simplified cabling is 

SATA. 

c. High-end workstations and servers generally use more 

sophisticated I/O architectures, such as SCSI and fiber 

channel (FC). 
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4. Network-attached storage (NAS) is a file-level storage architecture 

where 1 or more servers with dedicated disks store data and share it 

with many clients connected to a network. NAS is 1 of the 3 main 

storage architectures—along with storage area networks (SAN) and 

direct-attached storage (DAS)—and is the only 1 that’s both 

inherently networked and fully responsible for an entire network’s 

storage. 

5. A storage area network (SAN) is a dedicated high-speed network or 

subnetwork that interconnects and presents shared pools of storage 

devices to multiple servers. 

 

 

14.8. SUMMARY 
 The technique that operating system uses to determine the 

request which is to be satisfied next is called disk scheduling.  

 Several kinds of buses are available, including advanced 

technology attachment (ATA), serial ATA (SATA), eSATA, 

universal serial bus (USB), and fibre channel (FC). 

 Magnetic tape was used as an early secondary-storage medium. 

 Host-attached storage is storage accessed through local I/O 

ports. 

  

 Three major methods of allocating disk space are in wide use: 

contiguous, linked, and indexed.   

  Contiguous allocation requires that each file occupy a set of 

contiguous blocks on the disk. 

 Linked allocation solves all problems of contiguous allocation. 

With linked allocation, each file is a linked list of disk blocks; 

the disk blocks may be scattered anywhere on the disk. 

  Since disk space is limited, we need to reuse the space from 

deleted files for new files, if possible. 

 For sequential access, the file system remembers the disk 

address of the last block referenced and, when necessary, reads 

the next block. 

 14.9. KEYWORDS 

 

 SAN: A storage-area network (SAN) is a private network 

(using storage protocols rather than networking protocols) 

connecting servers and storage units.  

 SCAN: In the SCAN algorithm, the disk arm starts at one end 

of the disk and moves toward the other end, servicing requests 

as it reaches each cylinder, until it gets to the other end of the 

disk. 

 C-SCAN: C-SCAN scheduling is a variant of SCAN designed 

to provide a more uniform wait time.  
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  14.10. SELF ASSESSMENT QUESTIONS AND EXERCISES 

 

Short Answer questions: 

1. What is RPM? 

2. What is a Disk Transfer Rates? 

3. What is SSTF Scheduling? 

4. What is C Scan Scheduling? 

5. What Look Scheduling? 

 

Long Answer questions: 

1. Explain different types of Disk Scheduling? 

2. Explain Disk Management? 

3. Explain Over view of Storage structures? 
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MODEL QUESTION PAPER 

SECTION-A                            (10X2=20 marks) 

1. Define Operating System. List the objectives of an operating 

system.  

2. With a neat diagram, explain various states of a process.  

3. Give the Peterson’s solution to the Critical section problem.  

4. Distinguish between Logical and Physical address space.  

5. What are the necessary conditions for the occurrence of deadlock?  

6. What are the various attributes that are associated with an opened 

file? 

7. Explain how multiprogramming increases the utilization of CPU.  

8. What are the advantages of inter-process communication? Also 

explain various implementations of inter-process communication.  

9. What is a Semaphore? Also give the operations for accessing 

semaphores.  

10. What is the purpose of Paging and Page tables?   

 

SECTION-B                     (5X5=25 marks) 

 

1. With a neat diagram, explain the layered structure of UNIX 

operating system.   

(OR) 

What are the advantages and disadvantages of using the same 

system call interface for manipulating both files and devices?  

2. What is a process? Explain about various fields of Process Control 

Block.  

(OR) 

What are the advantages of inter-process communication? How 

communication takes place in a shared-memory environment? 

Explain.  

3. What is a Critical Section problem? Give the conditions that a 

solution to the critical section problem must satisfy.  

(OR) 

 



 

227 

 

Model Question Paper    

 

Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self – Instructional Material 

 

 

 

 

 

 

What is Dining Philosophers problem? Discuss the solution to 

Dining philosopher’s problem using monitors.  

4. What is a Virtual Memory? Discuss the benefits of virtual memory 

technique.  

(OR) 

What is Thrashing? What is the cause of Thrashing? How does the 

system detect Thrashing? What can the system do to eliminate this 

problem?  

5. What is a deadlock? How deadlocks are detected? 

(OR) 

Explain the Resource-Allocation-Graph algorithm for deadlock 

avoidance.  

 

SECTION-C                   (3X10=30 marks) 

(answer any three) 

1. Discuss the necessary conditions that cause deadlock situation to 

occur. 

2. Explain and compare the FCFS and SSTF disk scheduling 

algorithms. 

3. Explain the various methods for free-space management. 

4. Explain the Round Robin scheduling algorithm with a suitable 

example. 

5. Write about deadlock conditions and bankers algorithm in detail. 

 

 

 


